

Use r Gu ides

I D C D O C U M E N T A T I O N

Database
Tutorial

Approved for public release;
distribution unlimited

Notice

Every effort was made to ensure that the information in this document was accurate at the time of printing.
However, the information is subject to change.

Contributors

Jerry A. Carter, Science Applications International Corporation
Michael Pickering, Pacific-Sierra Research Corporation
Henry Swanger, Science Applications International Corporation

Trademarks

IBM is a registered trademark of International Business Machines Corporation.
ORACLE is a registered trademark of Oracle Corporation.
SQL*Plus is a registered trademark of Oracle Corporation.
UNIX is a registered trademark of UNIX System Labs, Inc.

Ordering Information

This document was issued by the Monitoring Systems Operation of Science Applications International
Corporation (SAIC) as part of the International Data Centre (IDC) Documentation. The ordering number for
this document is SAIC-99/3022, (PSR-99/TN1145), published March 1999. Copies of this document may
be ordered by FAX: (619) 458-4993.

This document is cited within other IDC documents as [IDC5.1.2].

I D C D O C U M E N T A T I O N

Da tabase Tu to r i a l

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l

CONTENTS
About this Document i

■ PURPOSE ii

■ SCOPE ii

■ AUDIENCE ii

■ RELATED INFORMATION ii

■ USING THIS DOCUMENT iv

Conventions v

Introduct ion 1

■ STRUCTURED QUERY LANGUAGE 2

■ RELATIONAL DATABASES 2

■ TUTORIAL DATABASE 5

DBA Instructions 5

SQL Commands 7

■ CONNECTING TO DATABASE ACCOUNTS 8

Starting SQL*Plus 8

Changing Accounts 8

Terminating Connections 9

■ SELECTING DATA FROM TABLES 9

■ ORDERING ROWS OF RESULTS 18

■ ELIMINATING DUPLICATE ROWS 21

■ QUERYING MULTIPLE TABLES – JOINS 25

Cartesian Products 30

■ SUBQUERIES 31

■ OUTER JOINS 35
9 9

I D C D O C U M E N T A T I O N

■ CREATING TABLES 39

■ CHANGING TABLE CONTENTS 41

INSERT 41

DELETE 43

UPDATE 43

ROLLBACK and COMMIT 44

SQL*Plus Extensions 47

■ QUERY BUFFER 48

■ CHARACTER FUNCTIONS 55

■ NUMBER FUNCTIONS 57

■ MANIPULATING DATES AND TIMES 60

Selecting Dates 62

Converting between Epoch Times and Dates 63

Improving Query Performance 67

■ USING INDEXED COLUMNS 69

■ LISTING MOST RESTRICTIVE TABLES LAST 73

■ USING IN VERSUS EXISTS 74

Navigat ing Databases 79

■ INSTANCES 80

■ ACCOUNTS 80

■ TABLES 81

Advanced Seismology Queries 85

■ FINDING ALL EVENTS IN ARRIVAL TIME WINDOWS 86

■ RETRIEVING ORIGIN INFORMATION FROM EVENTS WITH DEPTH PHASES 89

■ ESTIMATING STATION RESIDUALS 89

■ CALCULATING AZIMUTH RESOLUTION 90

■ PERFORMING LINEAR REGRESSION 92

Advanced Radionucl ide Queries 97

■ SEARCHING FOR UNREVIEWED FULL SPECTRA 99
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

I D C D O C U M E N T A T I O N

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l

■ VERIFYING RECEIPT OF SPECTRA 100

■ SEARCHING FOR SPECIFIC NUCLIDES 101

■ DETERMINING CONCENTRATION RANGES 102

■ SEARCHING FOR SPECIFIC PEAKS 103

References 105

Glossary G1

Index I1
9 9

I D C D O C U M E N T A T I O N

Da tabase Tu to r i a l

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l

TABLES
TABLE I: TYPOGRAPHICAL CONVENTIONS v

TABLE II: TERMINOLOGY vi

TABLE 1: ORIGIN 2

TABLE 2: COMPARISON OPERATORS 18

TABLE 3: ORACLE GROUP-VALUE FUNCTIONS 22

TABLE 4: SQL*PLUS QUERY BUFFER COMMANDS 54

TABLE 5: CHARACTER FUNCTIONS 55

TABLE 6: ORACLE SINGLE-VALUE FUNCTIONS 57

TABLE 7: ORACLE LIST FUNCTIONS 58

TABLE 8: IDC FUNCTIONS 58

TABLE 9: ORACLE DATE AND TIME FUNCTIONS 60

TABLE 10: ORACLE DATE AND TIME FORMATS 60
9 9

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
About th i s Document

This section describes the organization and content of the document and includes

the following topics:

■ Purpose

■ Scope

■ Audience

■ Related Information

■ Using this Document
i9 9

About this
Document

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

ii
About th i s Document

PURPOSE

This document describes how to use the Structured Query Language (SQL) to

access and extract information from the database tables at the International Data

Centre (IDC).

SCOPE

This document introduces SQL*Plus commands that are used for obtaining and

manipulating data within the databases of the IDC. It also introduces the anatomy

of a database table and explains where to obtain information on the contents and

relationships of the database tables. It does not describe the database schema or

the organization of the databases.

AUDIENCE

This document is intended for scientists, technicians, and managers who operate,

maintain, and/or use the IDC and the data products that it provides.

RELATED INFORMATION

Use this document in conjunction with [IDC5.1.1Rev1], Database Schema.

See “References” on page 105 for a listing of all the sources of information con-

sulted in preparing this document. Among those references are the documents

described below.

[ANS86] outlines the syntax for the SQL Language standard.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

About this
Document

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
E. F. Codd [Cod90] formally proposed the relational model in 1969. Between 1968

and 1978 he published many papers on the relational model. From 1979–1988 he

proposed extensions to the original relational model (hence Version 2 in the title).

This book consolidates the writings of two decades into a single reference and is

intended for Database Administrators (DBAs) and developers.

Chris Date was on the IBM technical team that designed two of the first commer-

cially marketed relational products: SQL/DS and DB2. Since that time he has been

a database consultant. [Dat86] is a collection of articles he has written. It is

intended for technical readers.

[Eme89] contains an introduction to relational databases, relational database

design, and SQL. It is intended for novice SQL users and developers.

[Fle89] provides a practical approach and methodologies for designing tables. This

handbook is a standard on how to make relational theory work in practice.

[Gil89] focuses on the performance differences between correlated (EXISTS) and

uncorrelated (IN) subqueries. [Sch88] includes guidelines for ordering items in

SQL clauses, such as the order of columns in the FROM clause and the order of

predicates in the WHERE clause.

[Gru90], [Hur88], and [Lus88] are three of the better introductions to the SQL

language. The first two books are simpler; the latter is intended for the experi-

enced programmer or manager. Also of note is [van88a], which contains an intro-

duction to SQL formulated around the creation of a sports club database. This

introductory guide is geared for the novice and focuses on American National

Standards Institute (ANSI) SQL standard queries. [van88b] is a companion guide

to [van88a] and is a more readable version of the SQL standard than [ANS86].

The IDC uses an ORACLE database management system as well as the technical

publications written by Oracle Corporation. [Koc97] provides a comprehensive

reference for ORACLE releases 7 through 8 and includes examples of SQLPLUS,

query optimization, programming interfaces, and more.

This document is based on [And90b]. The text herein is an update of that docu-

ment.
iii9 9

About this
Document

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

iv
USING TH IS DOCUMENT

This document is organized as follows:

■ Introduction

This chapter introduces SQL and relational databases.

■ SQL Commands

This chapter describes the basic SQL commands for obtaining and

manipulating the information contained in the databases.

■ SQL*Plus Extensions

This chapter introduces the ORACLE extensions of SQL (SQL*Plus).

■ Improving Query Performance

This chapter suggests methods for improving query performance.

■ Navigating Databases

This chapter describes how the tables of the IDC databases are distrib-

uted among computers and accounts and where the information on

accounts and tables is located.

■ Advanced Seismology Queries

This chapter contains examples of advanced queries used when manip-

ulating seismological data.

■ Advanced Radionuclide Queries

This chapter contains examples of advanced queries used when manip-

ulating radionuclide data.

■ References

This section lists the sources cited in this document.

■ Glossary

This section defines the terms, abbreviations, and acronyms used in this

document.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

About this
Document

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
■ Index

This section lists topics and features provided in this document along

with page numbers for reference.

Convent ions

This document uses a variety of conventions, which are described in the following

tables. Table I shows the typographical conventions. Table II explains certain tech-

nical terms that are not part of the standard Glossary, which is located at the end

of this document. Most terms in this table pertain to SQL.

TABLE I: TYPOGRAPHICAL CONVENTIONS

Element Font Example

database table

database table and attribute
when written in the dot notation

headings, figure titles, and table titles

the first time a SQL command is used
in an example

bold dataready

prodtrack.status

About this Document

select

attributes of database tables
when written separately

processes and software units

user-defined arguments

 italics status

ParseSubs

delete-remarks object

computer code and output

filenames, directories, and websites

text that should be typed in exactly
as shown

courier >(list Ôa Ôb Ôc)

amp.par

select

ORACLE key words in the text of the
document

CAPS SELECT

All rows of the database are not
shown, due to space limitations.

<more rows at the bottom>
v9 9

About this
Document

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

vi
TABLE II: TERMINOLOGY

Term Description

account group of unique tables that are the
default tables for queries

Cartesian product query result that returns every possible
combination of all rows in all tables in the
FROM clause (most likely an error)

correlation name alias for the table name that fully qualifies
the field names in SQL clauses (providing
an easy way of specifying exactly which
fields come from which tables)

database instance unique set of database accounts

join query that allows the selection of data
from more than one table and combines
the data returned into a single result table

key column or set of columns that make each
row of a database table unique

natural join query that returns rows from a join having
the specified join field value in both tables

outer join query that returns rows from a join having
the join field value in one table but not
the other

predicates search conditions that are part of the SQL
WHERE clause (contains a comparison
operator that narrows the search to spe-
cific rows)

sequence numbers number in an ORDER BY clause that
refers to the order of the columns listed in
the SELECT clause

subquery complete SQL statement on the right-
hand side of a search predicate in the
WHERE clause
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

About this
Document

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
transaction operation made on a database table that
changes the table in some manner

tuple row or record in a table

view pseudo-table derived from one or more
tables, which can be queried in the same
manner as a table

TABLE II: TERMINOLOGY (CONTINUED)

Term Description
vii9 9

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
I n t roduc t ion

This chapter reviews the principles of relational databases and introduces the data-

bases used for this tutorial. It includes the following topics:

■ Structured Query Language

■ Relational Databases

■ Tutorial Database
19 9

Introduct ion ▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

2

I n t roduc t ion

STRUCTURED QUERY LANGUAGE

SQL is a language for manipulating data in a relational database. Originally cre-

ated by IBM, many dialects of SQL have been developed by other database ven-

dors. In the early 1980s, the ANSI started the development of a language

standard for managing relational data. The SQL standard was published in 1986

[ANS86]. The International Standards Organization (ISO) has published a stan-

dard as well. SQL*Plus is ORACLE’s interactive SQL dialect. SQL*Plus includes

extensions that are not part of the SQL standard.

This tutorial demonstrates how to use SQL*Plus to access the IDC databases. It

assumes no prior knowledge of relational databases or SQL*Plus. A succession of

progressively more complex SQL queries is used to demonstrate each command.

Complete information on each command is available in [Koc97]. Except where

noted, all queries comply with the ANSI SQL standard.

RELAT IONAL DATABASES

A relational database is composed of tables, also called relations. Table 1 is the ori-

gin table as defined in [IDC5.1.1Rev1].

TABLE 1: ORIGIN

Column Storage Type Description

1 orid number(8) origin identifier

2 lat float(24) estimated latitude

3 lon float(24) estimated longitude

4 depth float(24) estimated depth
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Introduct ion▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
5 time float(53) epoch time

6 evid number(8) event identifier

7 jdate number(8) Julian date

8 nass number(4) number of associated phases

9 ndef number(4) number of locating phases

10 ndp number(4) number of depth phases

11 grn number(8) geographic region number

12 srn number(8) seismic region number

13 etype varchar2(7) event type

14 depdp float(24) estimated depth from depth phases

15 dtype varchar2(1) depth method used

16 mb float(24) body wave magnitude

17 mbid number(8) body wave magnitude identifier

18 ms float(24) surface wave magnitude

19 msid number(8) surface wave magnitude identifier

20 ml float(24) local magnitude

21 mlid number(8) local wave magnitude identifier

22 algorithm varchar2(15) location algorithm used

23 auth varchar2(15) source/originator

24 commid number(8) comment identifier

25 lddate date load date

TABLE 1: ORIGIN (CONTINUED)

Column Storage Type Description
39 9

Introduct ion ▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

4

A table is made up of columns (vertical) and rows (horizontal). For example, the

origin table has 25 columns. The number of rows depends on the size of the data-

base. The first few rows of an origin table are listed below:

 LAT LON DEPTH TIME ORID EVID JDATE ...

 42.7671 145.3814 51.1940 633669305.144 1115 -1 1990030 ...

 -6.5238 131.6238 57.1479 633670953.664 1116 -1 1990030 ...

-17.3021 -178.5890 58.8421 633674762.818 1118 -1 1990030 ...

-13.8659 173.5236 100.7905 633678421.987 1119 -1 1990030 ...

 -9.2605 125.4961 145.9096 633690606.505 1123 -1 1990030 ...

<more rows at the bottom>

Columns are sometimes called attributes or fields, and rows are sometimes called

tuples or records.

Each row in a table is unique. Although the combination of all attributes in a

record is unique, in most cases a single attribute or a combination of a few

attributes is guaranteed to be unique. The attribute or combination of a few

attributes that are unique and are commonly used to reference a single record are

known as keys. In the origin table, the orid attribute is a key as is the collection of

attributes: lat, lon, depth, and time. A table may have more than one key. One of

the keys is usually designated the primary key, and the others are known as alter-

nate keys. Primary and alternate keys may not be NULL (otherwise they would

not be unique). A table will usually also contain foreign keys, which are primary or

alternate keys in some other table in the database. Foreign keys need not be

unique and may be NULL. In the origin table, evid and commid are foreign keys.

The power of a relational database is its ability to relate information in one table to

information in another table; this is accomplished mostly through keys. When the

tables are designed, the information that is to be stored in the database is distrib-

uted logically among several tables. In a seismological example, consider the prob-

lem of arrivals, origins, and events. Arrivals are recorded by stations of a seismic

network. Information from several arrivals (for example, arrival time) is combined

to form a hypothesis for the event location, which is known as the origin. Several

location hypotheses (origins) may be made for every event. Four tables are used

to represent this information: arrival, assoc, origin, and event. Each arrival may con-
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Introduct ion▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
tribute to zero or more origins, and each origin requires several arrivals. The assoc

table links (or associates) the arrival information to the origin information through

the arid and orid keys. For any particular orid in the origin table, you can list all of

the entries in the assoc table containing that orid. The assoc records list the associ-

ated arids, which can be used to obtain the arrival records. Conversely, you could

find all of the origins that a particular arrival contributed by listing all of the assoc

entries with a specific arid. The assoc records list the associated orids, which can be

used to obtain the origin records. The origin records also contain the evid foreign

key. Several origin records may have the same evid. Together these origin records

contain the hypothesized locations for the particular event. The event table itself

contains an orid, which identifies the preferred event solution.

TUTORIAL DATABASE

The database account used for the majority of the queries in this document can be

installed and used to practice the queries introduced. The account is geodemo and

it contains tables with data from the Prototype International Data Centre (PIDC).

Not all of the queries will produce the same results, however. Those queries that

use larger data sets, such as those in the chapters on advanced seismological and

radionuclide queries, were run on larger data sets or on tables that are not

included in the geodemo account. The geodemo data are not required to make this

tutorial useful. The same queries may be run with any IDC data set.

A valid ORACLE account and password are required to run the SQL queries in this

tutorial. The DBA will provide a database instance, an ORACLE account, and

detailed instructions on how to connect to the database. You will also be issued a

database password.

DBA Ins t ruc t ions

Use the following UNIX command to load the geodemo tutorial data set:

geodemo account/password
59 9

Introduct ion ▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

6

The geodemo program uses the ORACLE import command to load data into the

account. The import commands that appear on the screen may be ignored. After

the geodemo data set has been loaded, the data stay in the database until they are

unloaded with the following UNIX command:

geodemodrop account/password
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
SQL Commands

This chapter introduces standard SQL commands and includes the following top-

ics:

■ Connecting to Database Accounts

■ Selecting Data from Tables

■ Ordering Rows of Results

■ Eliminating Duplicate Rows

■ Computing Functions on Groups of Rows

■ Querying Multiple Tables – Joins

■ Subqueries

■ Outer Joins

■ Creating Tables

■ Changing Table Contents
79 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

8

SQL Commands

CONNECT ING TO DATABASE
ACCOUNTS

SQL*Plus can be considered an interactive program because it must be manually

started and terminated. After starting the program, you can change the account.

Sta r t i ng SQL*P lus

Enter the following command at the UNIX prompt to start SQL*Plus:

sqlplus account@instance

A password prompt is displayed:

Enter password:

After you have entered the correct password (the password will not be echoed to

the screen) an ORACLE database banner is displayed, followed by a new prompt:

SQL>

In this document, this prompt indicates that you may enter the next SQL query.

When starting SQL*Plus, a login startup file is executed. This file sets your user

environment and defines commonly used commands. At the IDC, a global login

startup file is provided for all users.

Chang ing Account s

The CONNECT command changes the connection from one database account to

another:

connect account@instance
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
As when the initial connection was made, a prompt for a password is displayed,

and you must enter a valid password before the connection is allowed:

Enter password:

Te rmina t ing Connec t ions

The EXIT command terminates the database connection:

SQL> exit

SELECT ING DATA FROM TABLES

Selecting data from the database is the most common SQL operation. A SELECT

command consists of two or more clauses terminated by a semicolon (;):

select some columns

from a table;

The SELECT clause is always entered first, immediately followed by the FROM

clause. SQL key words, tables, and fields can be entered in lowercase or upper-

case. This document shows example tables and attributes in lowercase. Words can

be separated by spaces or tabs and can be carried across multiple lines. This docu-

ment displays each SQL clause on a separate line. A semicolon must always termi-

nate the statement.

Query (1) selects a number of columns from the origin table. Your query output

may differ from this output. For example, the format of decimal numbers may not

be identical. Column formats are controlled by SQL*Plus commands (see

“SQL*Plus Extensions” on page 47). An alternative way of displaying time is dis-

cussed in “Manipulating Dates and Times” on page 60.
99 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

10
(1) SQL> select lat, lon, depth, time, orid, evid, jdate

from origin;

 LAT LON DEPTH TIME ORID EVID JDATE

--------- --------- --------- --------------- --------- -------- ------

 0.9815 131.5063 4.6399 636710596.450 3499 -1 1990065

 36.8840 73.3430 19.7271 636714964.102 3679 -1 1990065

 -6.4516 148.4892 0.0000 636715738.291 3680 -1 1990065

 1.2863 122.3456 0.0000 636719076.120 3681 -1 1990065

 -5.9693 147.6910 196.9389 636721535.597 3503 -1 1990065

 58.2493 26.7973 0.0000 636721753.664 3504 -1 1990065

 59.1539 27.1154 0.0000 636723173.244 3682 -1 1990065

 12.1327 143.6159 22.1815 636723655.160 3506 -1 1990065

 -8.4487 150.8799 0.0000 636725410.723 3507 -1 1990065

 -19.3829 -177.0614 70.8751 636726236.684 3508 -1 1990065

 -20.4274 -67.2272 68.9936 636728262.655 3509 -1 1990065

 -9.4297 125.8151 33.0000 636729740.586 3510 -1 1990065

 -10.8992 117.5039 29.6973 636730261.597 3683 -1 1990065

 36.8908 73.4689 9.1589 636732572.863 3512 -1 1990065

 -17.8557 168.0396 27.5160 636733569.784 3513 -1 1990065

 32.9234 74.9347 12.9065 636734589.275 3514 -1 1990065

 21.9599 142.8868 0.0000 636734894.155 3684 -1 1990065

 -10.5516 119.7778 37.6402 636737108.355 3516 -1 1990065

18 rows selected.

SQL>

The asterisk (*) character represents all columns. Query (2) would return the same

number of rows as Query (1) but would display all columns of the origin table.

(2) SQL> select *

from origin;

The result of any query is a table of columns and rows. The order of columns in

the SELECT clause determines the display sequence. If all fields are selected with

SELECT *, they are output in the sequence that they were created.

Query (1) showed how the SELECT clause restricts which columns are displayed.

Query (3) shows how the WHERE clause restricts which rows are returned.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
(3) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where orid=3508;

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

 67869 3508 YKA P 95.330 237.14

 67669 3508 ASAR P 45.601 94.47

 67671 3508 ASAR PcP 45.601 94.47

 67672 3508 ASAR ScP 45.601 94.47

 66946 3508 MAT P 70.075 135.08

 67522 3508 ASPA P 45.601 94.47

 67026 3508 ARA0 PKP 127.988 27.34

 66814 3508 EKA PKP 143.755 350.24

8 rows selected.

SQL>

The WHERE clause contains search conditions, called predicates, which narrow the

search to specific rows. The predicate contains a comparison operator that com-

pares two expressions (see Table 2 for a list of the comparison operators.) In

Query (3), the orid column is the left-hand expression, and the constant 3508 is

the right-hand expression. These expressions are tested for equality with the =

operator, and only those rows containing an orid of 3508 are returned. The test

for inequality uses the != (not equal) operator. The = operator also tests strings for

equality. Query (4) shows how the text of the string must be enclosed by single

quotes.

(4) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where sta = 'MAT';

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

66946 3508 MAT P 70.075 135.08

66949 3683 MAT P 51.289 21.35

66951 3683 MAT LR 51.289 21.35

SQL>
119 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

12
Although SQL key words can be entered in either uppercase or lowercase, string

searches are case sensitive depending on how data are stored in the database. For

example, the range defined for the sta attribute is any uppercase string up to six

characters (see [IDC5.1.1Rev1]). Because sta is stored in uppercase, the following

WHERE clause condition would return no rows:

where sta=ÕmatÕ

The LIKE operator matches partial strings. The underscore character (_) matches

any single character. Query (5) uses two-letter phase names beginning with ‘S’ to

limit the results.

(5) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where phase like 'S_';

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

67021 3682 ARA0 Sn 10.404 356.88

71464 3682 KAF Sn 2.985 352.71

SQL>

The percent sign (%) matches zero, one, or more characters. Query (6) obtains

the information for all s-type phases.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
(6) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where phase like 'S%';

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

 68225 3503 ASPA S 22.114 39.02

 67507 3503 ASAR S 22.114 39.02

 67672 3508 ASAR ScP 45.601 94.47

 67531 3510 ASPA S 16.199 330.16

 67095 3512 GAR S 3.270 129.18

 67542 3516 ASPA S 18.793 311.86

 68086 3679 GAR S 3.199 312.33

 67021 3682 ARA0 Sn 10.404 356.88

 71464 3682 KAF Sn 2.985 352.71

 67092 3683 GAR S 66.455 321.53

10 rows selected.

SQL>

Three logical operators (AND, OR, and NOT) may be used to combine multiple

predicates in a WHERE clause. AND specifies that both predicates must be satis-

fied for a row of data to be returned, as shown in Query (7).

(7) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where orid=3508

and sta='ASAR';

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

 67669 3508 ASAR P 45.601 94.47

 67671 3508 ASAR PcP 45.601 94.47

67672 3508 ASAR ScP 45.601 94.47

SQL>
139 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

14
OR specifies that the row should be returned if either predicate is satisfied, as

shown in Query (8).

(8) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where orid=3508

or sta='ASAR';

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

 67490 3499 ASAR P 24.757 354.27

 67506 3503 ASAR P 22.114 39.02

 67507 3503 ASAR S 22.114 39.02

 67510 3506 ASAR P 37.037 15.89

 67664 3507 ASAR P 22.262 49.67

 67869 3508 YKA P 95.330 237.14

 67669 3508 ASAR P 45.601 94.47

 67671 3508 ASAR PcP 45.601 94.47

 67672 3508 ASAR ScP 45.601 94.47

 66946 3508 MAT P 70.075 135.08

 67522 3508 ASPA P 45.601 94.47

 67026 3508 ARA0 PKP 127.988 27.34

 66814 3508 EKA PKP 143.755 350.24

 67680 3510 ASAR P 16.199 330.16

 67691 3512 ASAR P 83.081 315.51

 67692 3513 ASAR P 32.364 86.21

 67694 3513 ASAR pP 32.364 86.21

 67695 3514 ASAR P 79.738 313.03

 67697 3516 ASAR P 18.793 311.86

 67492 3679 ASAR P 83.157 126.55

 67494 3680 ASAR P 22.199 217.62

 67686 3683 ASAR P 20.168 131.41

22 rows selected.

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
Other comparison operators allow tests for a range of values. Query (9) tests for

an orid < (less than) 3508.

(9) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where orid < 3508

and sta = 'ASAR';

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

 67490 3499 ASAR P 24.757 354.27

 67506 3503 ASAR P 22.114 39.02

 67507 3503 ASAR S 22.114 39.02

 67510 3506 ASAR P 37.037 15.89

67664 3507 ASAR P 22.262 49.67

SQL>

Query (10) tests for an orid <= (less than or equal to) 3508.

(10) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where orid <= 3508

and sta = 'ASAR';

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

 67490 3499 ASAR P 24.757 354.27

 67506 3503 ASAR P 22.114 39.02

 67507 3503 ASAR S 22.114 39.02

 67510 3506 ASAR P 37.037 15.89

 67664 3507 ASAR P 22.262 49.67

 67669 3508 ASAR P 45.601 94.47

 67671 3508 ASAR PcP 45.601 94.47

 67672 3508 ASAR ScP 45.601 94.47

8 rows selected.

SQL>
159 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

16
Query (11) adds a search for a value >= (greater than or equal to) 3500 to Query

(10).

(11) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where orid >= 3500

and orid <= 3508

and sta = 'ASAR';

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

 67506 3503 ASAR P 22.114 39.02

 67507 3503 ASAR S 22.114 39.02

 67510 3506 ASAR P 37.037 15.89

 67664 3507 ASAR P 22.262 49.67

 67669 3508 ASAR P 45.601 94.47

 67671 3508 ASAR PcP 45.601 94.47

 67672 3508 ASAR ScP 45.601 94.47

7 rows selected.

SQL>

The BETWEEN operator used in Query (12) offers a shortcut for Query (11).

(12) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where orid between 3500 and 3508

and sta = 'ASAR';

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

 67506 3503 ASAR P 22.114 39.02

 67507 3503 ASAR S 22.114 39.02

 67510 3506 ASAR P 37.037 15.89

 67664 3507 ASAR P 22.262 49.67

 67669 3508 ASAR P 45.601 94.47

 67671 3508 ASAR PcP 45.601 94.47

 67672 3508 ASAR ScP 45.601 94.47

7 rows selected.

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
In Query (13) the IN operator searches for a specific list of values.

(13) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where orid between 3500 and 3508

and sta = 'ASAR'

and phase in ('P','S');

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

 67506 3503 ASAR P 22.114 39.02

 67507 3503 ASAR S 22.114 39.02

 67510 3506 ASAR P 37.037 15.89

 67664 3507 ASAR P 22.262 49.67

 67669 3508 ASAR P 45.601 94.47

SQL>

You can specify the reverse of any operator, as shown in Query (14), where NOT

IN specifies the reverse of IN.

(14) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where orid between 3500 and 3508

and sta = ÕASARÕ

and phase not in (ÕPÕ,ÕSÕ);

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

 67671 3508 ASAR PcP 45.601 94.47

67672 3508 ASAR ScP 45.601 94.47

SQL>

Table 2 summarizes the comparison operators introduced in this section.
179 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

18
ORDERING ROWS OF RESULTS

In the previous examples, the rows of query results were displayed in an order

determined by ORACLE. You can specify the order by using the ORDER BY clause.

Query (15) sorts the result by phase.

(15) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where orid=3508

and phase like ÕP%Õ

order by phase;

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

 67869 3508 YKA P 95.330 237.14

 67669 3508 ASAR P 45.601 94.47

 66946 3508 MAT P 70.075 135.08

 67522 3508 ASPA P 45.601 94.47

 67026 3508 ARA0 PKP 127.988 27.34

TABLE 2: COMPARISON OPERATORS

Operator Sample ‘WHERE’ Clause

= where orid = 3508

> where orid > 3508

>= where orid >= 3508

< where orid < 3508

<= where orid <= 3508

BETWEEN where orid between 3508 and 3510

IN where phase in (ÕPnÕ, ÕSnÕ, ÕLgÕ)

NOT IN where orid not in (ÕPnÕ, ÕSnÕ, ÕLgÕ)

LIKE where phase like ÕP_Õ
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
 66814 3508 EKA PKP 143.755 350.24

 67671 3508 ASAR PcP 45.601 94.47

7 rows selected.

SQL>

Query (16) references more than one column in the ORDER BY clause:

(16) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where orid=3508

and phase like ÕP%Õ

order by phase, delta;

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

 67669 3508 ASAR P 45.601 94.47

 67522 3508 ASPA P 45.601 94.47

 66946 3508 MAT P 70.075 135.08

 67869 3508 YKA P 95.330 237.14

 67026 3508 ARA0 PKP 127.988 27.34

 66814 3508 EKA PKP 143.755 350.24

 67671 3508 ASAR PcP 45.601 94.47

7 rows selected.

SQL>

By default, ORACLE sorts in ascending order. You can specify that the results be

sorted in descending order or in a combination of both ascending and descending

order. Query (17) sorts first by phase in ascending (ASC) order, then by delta in

descending (DESC) order.
199 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

20
(17) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where orid=3508

and phase like ÕP%Õ

order by phase asc, delta desc;

 ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

 67869 3508 YKA P 95.330 237.14

 66946 3508 MAT P 70.075 135.08

 67669 3508 ASAR P 45.601 94.47

 67522 3508 ASPA P 45.601 94.47

 66814 3508 EKA PKP 143.755 350.24

 67026 3508 ARA0 PKP 127.988 27.34

 67671 3508 ASAR PcP 45.601 94.47

7 rows selected.

SQL>

You can replace columns in the ORDER BY clause with sequence numbers that

correspond to the position of the column in the SELECT clause. For example, in

Query (17) phase is the fourth column, and arid is the first column. Query (18)

produces the same result by referencing column numbers.

(18) SQL> select arid, orid, sta, phase, delta, seaz

from assoc

where orid=3508

and phase like ÕP%Õ

order by 4 asc, 5 desc;

ARID ORID STA PHASE DELTA SEAZ

--------- --------- ------ -------- -------- -------

 67869 3508 YKA P 95.330 237.14

 66946 3508 MAT P 70.075 135.08

 67669 3508 ASAR P 45.601 94.47

 67522 3508 ASPA P 45.601 94.47

 66814 3508 EKA PKP 143.755 350.24

 67026 3508 ARA0 PKP 127.988 27.34

 67671 3508 ASAR PcP 45.601 94.47

7 rows selected.

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
EL IMINAT ING DUPL ICATE ROWS

Sometimes a query will return duplicate rows. Query (19) selects all orids less than

3505 from the assoc table and consequently returns many duplicate rows.

(19) SQL> select orid

from assoc

where orid < 3505;

 ORID

 3499

 3499

 3503

 3503

 3503

 3503

 3503

 3503

 3504

 3504

 3504

 3504

12 rows selected.

SQL>

Specifying DISTINCT in the SELECT clause eliminates duplicate rows, as shown in

Query (20).

(20) SQL> select distinct orid

from assoc

where orid < 3505;

 ORID

3499

3503

3504

SQL>
219 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

22
Comput ing Func t ions on Groups
o f Rows

Group-value functions compute summary information across groups of rows.

Table 3 lists common group functions, which appear in the SELECT clause and

usually take column names as arguments.

The GROUP BY clause limits the rows to which the function is applied. The group-

value function is applied to each group of rows for which the value of the GROUP

BY column is unique.

Query (21) counts the number of events by day.

(21) SQL> select jdate, count(orid)

from origin

group by jdate;

 JDATE COUNT(ORID)

-------- -----------

 1990065 18

SQL>

TABLE 3: ORACLE GROUP-VALUE FUNCTIONS

Function Definition

AVG(value) average of value for a group of rows

COUNT(value) count of the number of rows in a group of rows

MAX(value) maximum of value for a group of rows

MIN(value) minimum of value for a group of rows

STDDEV(value) standard deviation of value for a group of rows

SUM(value) sum of value for a group of rows

VARIANCE(value) variance of value for a group of rows
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
Query (22) counts the number of arids for each orid in the assoc table.

(22) SQL> select orid, count(arid)

from assoc

group by orid;

 ORID COUNT(ARID)

--------- -----------

 3499 2

 3503 6

 3504 4

 3506 12

 3507 2

 3508 8

 3509 3

 3510 4

 3512 5

 3513 8

 3514 4

 3516 7

 3679 10

 3680 2

 3681 4

 3682 10

 3683 25

 3684 4

18 rows selected.

SQL>

Adding a WHERE clause reduces the number of source rows processed for the

aggregate count as shown in Query (23).
239 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

24
(23) SQL> select orid, count(arid)

from assoc

where orid < 3510

group by orid;

 ORID COUNT(ARID)

--------- -----------

 3499 2

 3503 6

 3504 4

 3506 12

 3507 2

 3508 8

 3509 3

7 rows selected.

SQL>

The HAVING clause restricts the GROUP BY clause in the same way that the

WHERE clause restricts the SELECT clause. Query (24) returns only those orids

that have more than two arids.

(24) SQL> select orid, count(arid)

from assoc

where orid < 3510

group by orid

having count(arid) > 2;

 ORID COUNT(ARID)

--------- -----------

 3503 6

 3504 4

 3506 12

 3508 8

3509 3

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
Query (25) sorts the final result in decreasing order by the orid with the most

arids. It uses all of the SQL SELECT clauses: SELECT, FROM, WHERE, GROUP BY,

HAVING, and ORDER BY. In this query, the ORDER BY clause instructs ORACLE

to sort by the second column, count(arid), in the SELECT clause.

(25) SQL> select orid, count(arid)

from assoc

where orid < 3510

group by orid

having count(arid) > 2

order by 2 desc;

 ORID COUNT(ARID)

--------- -----------

 3506 12

 3508 8

 3503 6

 3504 4

3509 3

SQL>

QUERY ING MULT IPLE TABLES – JO INS

In previous examples, single tables were queried; however, the data will not

always be available in one table. A “join” selects data from more than one table

and returns a single table as a result. This section describes two types of joins: a

natural join and an outer join. A natural join, which is the most common join,

returns rows that have the join field value in all tables. An outer join returns rows

that have the join field value in one table but not in the others (see “Outer Joins”

on page 35). Query (26) is a single-table (origin) query that finds all origins in a

given latitude, longitude window; however, the table does not contain phase. To

find all phases associated with the origins, the assoc table, which contains phase, is

needed. Both tables contain the orid column, which provides a link to join them.

Query (27) uses the dot notation to specify this link in the WHERE clause. In dot

notation, a dot separates the table name from the column name (table.column).
259 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

26
(26) SQL> select lat, lon, depth, time

from origin

where lat between 35.0 and 40.0

and lon between 50.0 and 75.0;

 LAT LON DEPTH TIME

--------- --------- --------- ---------------

 36.8840 73.3430 19.7271 636714964.102

36.8908 73.4689 9.1589 636732572.863

SQL>

(27) SQL> select arid, lat, lon, depth, time, phase

from assoc, origin

where assoc.orid=origin.orid

and lat between 35.0 and 40.0

and lon between 50.0 and 75.0;

 ARID LAT LON DEPTH TIME PHASE

--------- --------- --------- --------- --------------- --------

 67600 36.8908 73.4689 9.1589 636732572.863 P

 67093 36.8908 73.4689 9.1589 636732572.863 P

 67095 36.8908 73.4689 9.1589 636732572.863 S

 67891 36.8908 73.4689 9.1589 636732572.863 P

 67691 36.8908 73.4689 9.1589 636732572.863 P

 68114 36.8840 73.3430 19.7271 636714964.102 P

 68117 36.8840 73.3430 19.7271 636714964.102 pP

 67370 36.8840 73.3430 19.7271 636714964.102 P

 66866 36.8840 73.3430 19.7271 636714964.102 P

 67439 36.8840 73.3430 19.7271 636714964.102 P

 67492 36.8840 73.3430 19.7271 636714964.102 P

 67011 36.8840 73.3430 19.7271 636714964.102 P

 68083 36.8840 73.3430 19.7271 636714964.102 P

 68086 36.8840 73.3430 19.7271 636714964.102 S

 67834 36.8840 73.3430 19.7271 636714964.102 P

15 rows selected.

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
When a column in the SELECT clause occurs in more than one table in the FROM

clause, you must specify from which table the column should be displayed. Query

(28) adds orid to Query (27)’s SELECT clause and specifies that the orid from the

original table should be displayed.

(28) SQL> select origin.orid, arid, lat, lon, depth, time, phase

from assoc, origin

where assoc.orid=origin.orid

and lat between 35.0 and 40.0

and lon between 50.0 and 75.0;

 ORID ARID LAT LON DEPTH TIME PHASE

--------- --------- --------- --------- --------- --------------- ------

 3512 67600 36.8908 73.4689 9.1589 636732572.863 P

 3512 67093 36.8908 73.4689 9.1589 636732572.863 P

 3512 67095 36.8908 73.4689 9.1589 636732572.863 S

 3512 67891 36.8908 73.4689 9.1589 636732572.863 P

 3512 67691 36.8908 73.4689 9.1589 636732572.863 P

 3679 68114 36.8840 73.3430 19.7271 636714964.102 P

 3679 68117 36.8840 73.3430 19.7271 636714964.102 pP

 3679 67370 36.8840 73.3430 19.7271 636714964.102 P

 3679 66866 36.8840 73.3430 19.7271 636714964.102 P

 3679 67439 36.8840 73.3430 19.7271 636714964.102 P

 3679 67492 36.8840 73.3430 19.7271 636714964.102 P

 3679 67011 36.8840 73.3430 19.7271 636714964.102 P

 3679 68083 36.8840 73.3430 19.7271 636714964.102 P

 3679 68086 36.8840 73.3430 19.7271 636714964.102 S

 3679 67834 36.8840 73.3430 19.7271 636714964.102 P

15 rows selected.

SQL>

Query (28) used the name of the origin table to fully qualify orid. A field may also

be qualified by using a correlation name, which is like an alias for the actual table.

Query (29) uses correlation names to specify which fields come from which tables.

This query would return the same result as Query (28).
279 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

28
(29) SQL> select o.orid, a.arid, o.lat, o.lon, o.depth, o.time, a.phase

from assoc a, origin o

where a.orid=o.orid

and o.lat between 35.0 and 40.0

and o.lon between 50.0 and 75.0;

The correlation name for the assoc table is a and the correlation name for the ori-

gin table is o. Query (29) specifies which attributes are to be selected from which

tables. This feature is useful especially in complex queries.

Correlation names may consist of multiple characters but may not conflict with an

SQL key word. For example, ar is a valid correlation name for the arrival table, but

as is not a valid name for the assoc table. Query (30) results in an error, because

the correlation name as conflicts with an SQL key word.

(30) SQL> select o.orid, as.arid, o.lat, o.lon, o.time, as.phase,

ar.time, ar.azimuth, ar.slow

from assoc as, arrival ar, origin o

where as.orid=o.orid

and as.arid=ar.arid

and o.lat between 35.0 and 40.0

and o.lon between 50.0 and 75.0;

select o.orid, as.arid, o.lat, o.lon, o.time, as.phase,

 *

ERROR at line 1:

ORA-00936: missing expression

SQL>

Likewise, or is an invalid correlation name for origin. Any number of tables may be

joined. Query (31) builds on Query (29) and includes information from the arrival

table.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
(31) SQL> select o.orid, a.arid, o.lat, o.lon, o.time, a.phase, ar.time,

ar.azimuth, ar.slow

from assoc a, arrival ar, origin o

where a.orid=o.orid

and a.arid=ar.arid

and o.lat between 35.0 and 40.0

and o.lon between 50.0 and 75.0;

ORID ARID LAT LON TIME PHASE TIME AZIMUTH SLOW

---- ----- ------- ------- ------------- ---- ------------- ------- -----

3679 66866 36.8840 73.3430 636714964.102 P 636715402.398 78 3.15

3679 67011 36.8840 73.3430 636714964.102 P 636715430.148 96 7.26

3512 67093 36.8908 73.4689 636732572.863 P 636732624.094 -1 -1.00

3512 67095 36.8908 73.4689 636732572.863 S 636732665.000 -1 -1.00

3679 67370 36.8840 73.3430 636714964.102 P 636715455.398 97 6.86

3679 67439 36.8840 73.3430 636714964.102 P 636715695.703 326 5.01

3679 67492 36.8840 73.3430 636714964.102 P 636715708.000 326 5.01

3512 67600 36.8908 73.4689 636732572.863 P 636733305.906 326 5.01

3512 67691 36.8908 73.4689 636732572.863 P 636733317.797 315 5.90

3679 67834 36.8840 73.3430 636714964.102 P 636715693.797 351 5.41

3512 67891 36.8908 73.4689 636732572.863 P 636733304.203 350 5.44

3679 68083 36.8840 73.3430 636714964.102 P 636715013.000 -1 -1.00

3679 68086 36.8840 73.3430 636714964.102 S 636715052.703 -1 -1.00

3679 68114 36.8840 73.3430 636714964.102 P 636715449.923 91 8.76

3679 68117 36.8840 73.3430 636714964.102 pP 636715454.326 -1 -1.00

15 rows selected.

SQL>

To summarize the join query:

■ SELECT specifies which fields to display. If a field is in more than one

table, specify which table to use. Query (28) selected an orid from the

origin table. Query (29) used a correlation name to qualify each column.

■ FROM lists all tables.

■ A join predicate in the WHERE clause specifies the join column (the field

appearing in more than one table). Query (27) showed a join predicate

that joined assoc and origin on orid. Query (31) showed two join predi-

cates: one joined assoc and origin on orid, and one joined arrival and

assoc on arid.
299 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

30
Car tes i an P roduc t s

All tables referenced in the FROM clause should have a join predicate in the

WHERE clause. Otherwise, the result is a cartesian product consisting of every

possible combination of all the rows in all the tables in the FROM clause. For

example, in Query (32) the origin and origerr tables each have 18 rows. With a join

on the orid column in the WHERE clause, a join returns a row count of 18. With-

out the join predicate, a cartesian product results in a row count of 324 (18 origin

rows multiplied by 18 origerr rows).

(32) SQL> select count(*)

from origin, origerr

where origin.orid=origerr.orid;

 COUNT(*)

 18

SQL> select count(*)

from origin, origerr;

 COUNT(*)

 324

SQL>

Query (33) and Query (34) were edited, but a table that was no longer needed

was not removed from the FROM clause. Both queries ran on a data set contain-

ing eight weeks of data (the arrival table contains 46,856 rows, and the assoc table

contains 4,396 rows). The ORACLE timing feature was used to gather perfor-

mance statistics. Query (33) references the arrival table in the FROM clause, but

the WHERE clause is missing a predicate joining it to assoc. It ran for more than 56

hours. By removing the reference to arrival, Query (34) ran for only 4 seconds.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
(33) SQL> set timing on;

SQL> select ac.phase, count(ac.arid)

from arrival ar, assoc ac

where ac.phase in (ÕPnÕ, ÕPgÕ, ÕSnÕ, ÕLgÕ)

group by ac.phase;

PHASE COUNT(AC.ARID)

-------- --------------

Lg 80311184

Pg 21085200

Pn 72533088

Sn 18320696

Elapsed: 56:25:20.45

SQL>

(34) SQL> select ac.phase, count(ac.arid)

from assoc ac

where ac.phase in (ÕPnÕ, ÕPgÕ, ÕSnÕ, ÕLgÕ)

group by ac.phase;

PHASE COUNT(AC.ARID)

-------- --------------

Lg 1714

Pg 450

Pn 1548

Sn 391

Elapsed: 00:00:04.07

SQL>

SUBQUERIES

A predicate contains two expressions: one to the left of the comparison operator

and one to the right. The previous examples used either a constant or the name of

a join column in the right-hand expression. This expression may also contain a

complete SQL statement enclosed by parentheses. The value resulting from the

nested SQL statement is then applied to the left-hand expression. Query (35) uses

an IN subquery to find the earliest arrival time associated with origin 3679.
319 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

32
(35) SQL> select min(time)

from arrival

where arid in

(select arid

from assoc

where orid=3679);

 MIN(TIME)

 636715013

SQL>

Query (36) shows the same query rewritten as an EXISTS subquery:

(36) SQL> select min(time)

from arrival

where exists

(select arid

from assoc

where arrival.arid=assoc.arid

and orid=3679);

 MIN(TIME)

 636715013

SQL>

Query (37) writes the same query as a straight join, demonstrating that a sub-

query often provides alternative syntax for a join.

(37) SQL> select min(time)

from arrival, assoc

where assoc.arid=arrival.arid

and assoc.orid=3679;

 MIN(TIME)

 636715013

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
Subqueries may be nested within other subqueries to an unlimited number of lev-

els. Query (38) counts all associated arrivals by phase for a given time period,

including only those stations that are in the GSETT network.

(38) SQL> select sta, count(arid)

from assoc

where arid in

(select arid

from arrival

where time between 636725500 and 636730000

and sta in

(select sta

from affiliation

where net=ÕGSETTÕ

)

)

group by sta

order by sta;

STA COUNT(ARID)

------ -----------

ARA0 2

ASAR 5

ASPA 2

EKA 1

MAT 1

WRA 2

YKA 2

7 rows selected.

SQL>

A subquery can select the difference between two sets to find elements in one

that are not in the other. A join cannot provide this function. For example, to iden-

tify the number of unassociated arrivals, Query (39) establishes that the arrival

table contains 368 rows.
339 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

34
(39) SQL> select count(*) from arrival;

 COUNT(*)

 368

SQL>

Query (40) and Query (41) show how both a join and a subquery can count the

number of associated arrivals, the first with a join and the second with an EXISTS

subquery.

(40) SQL> select count(ar.arid)

from arrival ar, assoc ac

where ar.arid=ac.arid;

COUNT(AR.ARID)

 120

SQL>

(41) SQL> select count(arid)

from arrival

where exists

(select arid

from assoc

where arrival.arid=assoc.arid);

COUNT(ARID)

 120

SQL>

A join, however, cannot find the number of arrivals that are not associated. The

arrival table contains 368 rows, so Query (42)’s result is nonsense.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
(42) SQL> select count(ar.arid)

from arrival ar, assoc ac

where ar.arid != ac.arid;

COUNT(AR.ARID)

 44040

SQL>

Query (43) uses a NOT EXISTS subquery to obtain the correct answer.

(43) SQL> select count(arid)

from arrival

where not exists

(select arid

from assoc

where arrival.arid=assoc.arid);

COUNT(ARID)

 248

SQL>

The ability to identify the empty set, as shown in Query (43), is necessary for solv-

ing the problem of the outer join, the subject of the next section.

OUTER JO INS

An outer join is a join between two tables, which returns (a) all the rows matching

a join condition plus (b) all the rows from one table that do not match the join

condition. For those rows in (b), the queried columns from the other table are set

to NULL.

To fully understand joins, it is important to understand the relationships between

tables in the database. In a one-to-many relationship, each row in one table relates

to many rows in another table. For example, every origin row has many related
359 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

36
assoc rows. This relationship makes seismological sense because more than one

phase is required to locate an event. Query (44) and Query (45) return different

row counts for the same orid.

(44) SQL> select count(*)

from origin

where orid=3679;

COUNT(*)

 1

SQL>

(45) SQL> select count(*)

from assoc

where orid=3679;

COUNT(*)

 10

SQL>

Each row in the assoc table has one corresponding row (one-to-one relationship)

in the arrival table.1 However, some arrival phases are unassociated and do not

have a corresponding assoc row. So, the relationship between arrival and assoc is

one-to-one-or-none: every arrival row will have one or no assoc row. Query (39),

Query (40), and Query (43) established that out of 368 arrivals, 120 arrivals were

associated, and 248 arrivals were unassociated. As shown in Query (46), although

arrival has 368 rows, a join between arrival and assoc returns only 120 rows,

excluding all the unassociated arrivals.

1. This assumes that each arrival can have only one solution. This will not be the case for data sets that
store intermediate results. In that case, every arrival row could have many assoc rows.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
(46) SQL> select ar.arid, a.phase, ar.time, ar.azimuth, ar.slow

from arrival ar, assoc a

where ar.arid=a.arid

order by 1;

 ARID PHASE TIME AZIMUTH SLOW

--------- -------- --------------- ---------- -------

 66814 PKP 636727398.297 -1 -1.00

 66826 P 636730856.000 -1 -1.00

<many more rows>

120 rows selected.

SQL>

The natural join returns rows that have the same arid in both tables. The outer join

returns these rows plus the rows having an arid in one table but not the other. For

example, many arrival rows do not have a corresponding assoc row, because they

are not associated with an event. Unassociated arrivals belong to the outer join of

arrival and assoc. Query (47) uses the NOT EXISTS operator introduced in Query

(43) to find rows in arrival that do not have a match in assoc.

(47) SQL> select arid, time, azimuth, slow

from arrival

where not exists

(select arid

from assoc

where arrival.arid=assoc.arid);

 ARID TIME AZIMUTH SLOW

--------- --------------- ---------- -------

 67127 636710454.898 -1 -1.00

 67007 636711053.703 31 5.17

 67144 636711856.500 -1 -1.00

 67146 636711883.102 -1 -1.00

 66858 636713095.500 116 16.10

 66859 636713130.398 110 25.84

<many more rows>

248 rows selected.

SQL>
379 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

38
Query (46) and Query (47) provide information about all arrivals whether associ-

ated or unassociated. The two queries may be combined with the UNION opera-

tor to return all data in a single result table. The SELECT lists in the two UNIONed

queries must have the same number of columns. Fields having no data, such as

the phase field, which is in assoc but not arrival, need a place holder. Query (48)

prints dashes for the phase field of the outer join rows.

(48) SQL> select ar.arid, a.phase, ar.time, ar.azimuth, ar.slow

from arrival ar, assoc a

where ar.arid=a.arid

union

select ar.arid, Õ--------Õ, ar.time, ar.azimuth, ar.slow

from arrival ar

where not exists

(select arid

from assoc

where ar.arid=arid)

order by 1;

 ARID PHASE TIME AZIMUTH SLOW

--------- -------- --------------- ---------- -------

 66814 PKP 636727398.297 -1 -1.00

 66826 P 636730856.000 -1 -1.00

 66829 -------- 636730479.906 -1 -1.00

 66858 -------- 636713095.500 116 16.10

 66859 -------- 636713130.398 110 25.84

 66860 -------- 636713815.297 279 15.87

<many more rows>

368 rows selected.

SQL>

The ORACLE outer join operator, +, is easier to use, but is not ANSI SQL. In Query

(49) the outer join operator tags which table will not have data. For example,

assoc will not have rows for some arids in arrival, so assoc is tagged in the join

predicate.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
(49) SQL> select ar.arid, a.phase, ar.time, ar.azimuth, ar.slow

from arrival ar, assoc a

where ar.arid=a.arid(+)

order by 1;

 ARID PHASE TIME AZIMUTH SLOW

--------- -------- --------------- ---------- -------

 66814 PKP 636727398.297 -1 -1.00

 66826 P 636730856.000 -1 -1.00

 66829 636730479.906 -1 -1.00

 66858 636713095.500 116 16.10

 66859 636713130.398 110 25.84

 66860 636713815.297 279 15.87

 66861 636713832.000 285 34.72

 66862 636714355.797 149 15.87

 66863 636714387.102 167 27.78

 66864 636714565.398 168 15.22

 66865 636714594.500 172 27.78

 66866 P 636715402.398 78 3.15

<many more rows>

368 rows selected.

SQL>

CREAT ING TABLES

Up to this point, this document has focused on extracting data from existing

tables. An often useful method is to create tables and populate them with inter-

mediate results or with subsets of very large tables so that subsequent queries are

more manageable. The geodemo account contains tables that were created as

subsets of the operational database at the PIDC.

The CREATE TABLE command creates a new table. This command must include

the name of the new table as well as definitions of the columns that will be

included in the new table.
399 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

40
One method of defining a new table is to provide an explicit definition:

SQL> create table name (

column1 datatype1 [constraint1]

column2 datatype2 [constraint2]

 ...

);

Column1, column2, and so on are the names of the columns of the tables.

Datatypes for the columns typically used at the IDC include VARCHAR2(precision)

for characters, NUMBER(precision) for integers, FLOAT(precision) for floating

point numbers, and DATE for ORACLE dates. Precision defines the number of dig-

its that the number may have. Constraints such as NOT NULL and PRIMARY KEY

can be placed on columns of a table. [Koc97] provides more information about

these options.

Another method of creating a new table is to use the AS delimiter to generate the

table from the results of a query:

SQL> create table name as select...

from...;

The column names and definitions for the new table are derived from the SELECT

statement, and the table is populated with the results of the query. If no rows are

returned, the table is created, but it is left empty. Query (50) creates a new table

named myevents by using the results of a SELECT to include only events within the

specified latitude and longitude range.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
(50) SQL> create table myevents as

select *

from origin

where lat between 35.0 and 40.0

and lon between 50.0 and 75.0;

Table created.

SQL> select orid, lat, lon, time, depth, mb

from myevents;

 ORID LAT LON TIME DEPTH MB

--------- --------- --------- --------------- --------- ---------

 3679 36.8840 73.3430 636714964.102 19.7271 4.07

 3512 36.8908 73.4689 636732572.863 9.1589 3.98

SQL>

Use the DROP TABLE command to remove a table.

SQL> drop table name;

CHANGING TABLE CONTENTS

The contents of a table may be altered by inserting new rows, updating the values

of columns in rows, and deleting rows.

INSERT

The INSERT INTO command inserts new rows in a table. The new row or rows

may either be defined explicitly or as the result of a query. An explicit insertion

uses a VALUES statement as follows:

SQL> insert into name

values (value1 [, value2 [, ...]]);
419 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

42
Character strings in the VALUES statement must be in single quotes. The values

do not have to be in the order specified by the table as long as the column names

into which they are being placed are defined:

SQL> insert into name

value1_column_name[, value2_column_name [, ...]])

values (value1 [, value2 [, ...]]);

Use the following syntax to insert rows resulting from a query into a table:

SQL> insert into name

(column1 [, column2 [, ...]])

select ...

from ...;

Query (51) inserts a new row into the myevents table.

(51) SQL> insert into myevents

select *

from origin

where lat between 30.0 and 35.0

and lon between 50.0 and 75.0;

1 row created.

SQL> select orid, lat, lon, time, depth, mb

from myevents;

 ORID LAT LON TIME DEPTH MB

--------- --------- --------- --------------- --------- ---------

 3679 36.8840 73.3430 636714964.102 19.7271 4.07

 3512 36.8908 73.4689 636732572.863 9.1589 3.98

 3514 32.9234 74.9347 636734589.275 12.9065 3.49

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
DELETE

The DELETE FROM command deletes rows from a specified table. A WHERE

clause is usually used in conjunction with DELETE FROM, because without it, the

command deletes all of the rows of the table.

SQL> delete from name

where ...;

Query (52) deletes the new row from the myevents table.

(52) SQL> delete from myevents

where lat between 30.0 and 35.0

and lon between 50.0 and 75.0;

1 row deleted.

SQL> select orid, lat, lon, time, depth, mb

 from myevents;

 ORID LAT LON TIME DEPTH MB

--------- --------- --------- --------------- --------- ---------

 3679 36.8840 73.3430 636714964.102 19.7271 4.07

 3512 36.8908 73.4689 636732572.863 9.1589 3.98

SQL>

UPDATE

The UPDATE command changes specific table entries. The SET command lists the

columns that will be changed. The WHERE clause can limit the number of rows

affected by the UPDATE.

SQL> update name set column=value [, column=value [, ...]]

where ...;

An embedded SELECT command also updates table entries:

SQL> update name set column = (

select ...

from ...

);
439 9

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

44
To change more than one column, enclose the columns to be changed in paren-

theses after the SET command:

SQL> update name set (column [, column [, ...]]) = (

select ...

from ...

);

When changing more than one column, match the number of columns in the SET

list with the number of columns returned by the SELECT command.

Query (53) updates the magnitude (mb) field of the myevents table by using a

conversion formula to increase the magnitudes by 5 percent.

(53) SQL> update myevents set mb=mb*1.05;

2 rows updated.

SQL> select orid, lat, lon, time, depth, mb

from myevents;

 ORID LAT LON TIME DEPTH MB

--------- --------- --------- --------------- --------- ---------

 3679 36.8840 73.3430 636714964.102 19.7271 4.28

3512 36.8908 73.4689 636732572.863 9.1589 4.18

SQL>

ROLLBACK and COMMIT

The results of the INSERT INTO, DELETE FROM, or UPDATE commands are not

made permanent until you COMMIT them. Until the command is committed,

only the user who made the changes can view the results of the changes. The

COMMIT command is as follows:

SQL> commit;

If you discover a mistake prior to committing the changes, you can reverse the

changes by using the ROLLBACK command. After using COMMIT, however, you

cannot ROLLBACK the changes.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL
Commands

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
Query (54) returns the magnitude (mb) field of the myevents table to the original

values and removes this table from the database.

(54) SQL> rollback;

Rollback complete.

SQL> select orid, lat, lon, time, depth, mb

from myevents;

 ORID LAT LON TIME DEPTH MB

--------- --------- --------- --------------- --------- ---------

 3679 36.8840 73.3430 636714964.102 19.7271 4.07

3512 36.8908 73.4689 636732572.863 9.1589 3.98

SQL> drop table myevents;

Table dropped.

SQL>
459 9

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
SQL*P lus Ex tens ions

This chapter describes the SQL*Plus extensions used at the IDC and includes the

following topics:

■ Query Buffer

■ Character Functions

■ Number Functions

■ Manipulating Dates and Times
479 9

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

48
SQL*P lus Ex tens ions and
Func t ions

The SQL standard does not include an interactive query interface for entering and

modifying queries. Additionally, a date data type is not included in the SQL stan-

dard; therefore, any definition, storage, or manipulation of dates is a vendor-spe-

cific extension to SQL. The data dictionary, which stores information about objects

in the database, also varies from one vendor to the next.

This chapter addresses a few ORACLE extensions to the SQL standard and

describes many of the functions available for manipulating data.

QUERY BUFFER

SQL*Plus maintains an active query buffer containing the last query run. This sec-

tion introduces a few of the many commands available for working with the query

buffer. Complete information about query buffers is available in [Koc97].

One common use of the query buffer is to edit and resubmit a query. For example,

Query (55) selects the latest time from the arrival table.

(55) SQL> select max(time)

from arrival;

 MAX(TIME)

 636739132
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
Query (56) uses the LIST command to print the query buffer to the screen.

(56) SQL> list

1 select max(time)

2* from arrival

The active line of the query buffer is tagged with an asterisk. You can specify what

line should be active by entering the line number at the SQL prompt. For example,

Query (57) makes the first line active.

(57) SQKL> 1

1* select max(time)

The CHANGE command edits text on the active line. Query (58) changes max to

min.

(58) SQL> change/max/min

1* select min(time)

The RUN or / command reruns the query. Query (59) uses / to rerun Query (58).

(59) SQL> /

 MIN(TIME)

 636710455

The FORMAT command controls the output displayed for the named COLUMN.

For example, Query (59) returned the minimum time from arrival but did not

include any decimal digits. Query (60) uses the nine numeric template to format

the output to include three decimal digits and then reruns the query.
499 9

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

50
(60) SQL> column min(time) format 999999999.999

SQL> /

 MIN(TIME)

 636710455.898

SQL>

Column headings may be reset. Query (61) makes the first line of the query buffer

active and then appends text to the end of the line using the APPEND command.

This query names the column heading min_time.

(61) SQL> 1

1* select min(time)

SQL> append min_time

1* select min(time)min_time

SQL> list

1 select min(time)min_time

2* from arrival

SQL> /

 MIN_TIME

636710455

SQL>

Query (62) formats column min_time to include three decimal digits.

(62) SQL> column min_time format 999999999.999

SQL> /

 MIN_TIME

636710455.898

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
You can edit the query buffer through a UNIX editor, such as vi. Query (63) first

uses the DEFINE command to set the SQL*Plus _EDITOR to /usr/ucb/vi and

then uses the EDIT command to invoke the editor (vi) on the query buffer. The

boxed information represents the commands entered in vi.

(63) SQL> define _editor=/usr/ucb/vi

SQL> edit

At this point, use vi commands to edit the query. The following commands change

all occurrences of min back to max:

Upon saving the changes with the vi commands ZZ or :wq, the changed query is

displayed followed by the SQL> prompt. Query (64) uses the backslash (/) com-

mand to rerun the query.

select min(time)min_time

from arrival

/
~
~
~
~
~

select max(time)max_time
from arrival
/
~
~
~
~
~
~

519 9

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

52
(64) 1 select max(time)max_time

2* from arrival

SQL> /

 MAX(TIME)

 636739132

SQL>

Query (65) uses the SAVE command to write the query buffer to a UNIX file called

max_arrival_time and then runs it from the version in the file either with the

START command or by prepending the filename with the @ character.

(65) SQL> save max_arrival_time

Created file max_arrival_time

SQL> start max_arrival_time

 MAX(TIME)

 636739132

SQL>

The SQL*Plus HOST command allows a UNIX command to run inside SQL*Plus.

The file created with the SAVE command may be listed with the UNIX command

ls. SQL*Plus automatically adds the .sql extension to the file name.

(66) SQL> host ls -l max_arrival_time

max_arrival_time not found

SQL> host ls -l max_arrival_time.sql

-rw-rw-r-- 1 demo 40 Aug 28 15:36 max_arrival_time.sql

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
The query buffer processes one command at a time. A group of commands can be

put in a file and run with the START command as shown in Query (65). Each com-

mand in the file must be terminated with ; or /. Query (67) edits the file

max_arrival_time.sql to include a command that formats the output column.

The query buffer is still being edited through the UNIX editor, vi.

(67) SQL> edit max_arrival_time

The FORMAT command is added for the max_time column:

SQL> start max_arrival_time

 MAX_TIME

 636739132.406

SQL>

select max(time)max_time
from arrival
/
~
~
~
~
~
~

column max_time format 999999999.999;
select max(time) max_time
from arrival
/
~
~
~
~
~
~

539 9

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

54
In Query (68), the CLEAR BUFFER command is used to clear the query buffer.

(68) SQL> clear buffer

buffer cleared

You can save user-defined SQL*Plus startup commands in a file called

login.sql. When invoked, SQL*Plus executes an installation command file that

was created by your ORACLE DBA. Next it searches for login.sql, first in the

current working directory, then in a search path specified in the SQLPATH environ-

mental variable. The following UNIX command shows how to set a search path for

SQL*Plus.

setenv SQLPATH /usr/local/scripts:/myhome:/myhome

/oracle/scripts

By default, query results are displayed interactively on the computer screen. The

information that appears on the screen can be written or spooled to a file through

the SPOOL command:

spool filename

This command deletes the contents of the filename and writes the information

that appears on the screen until the SPOOL OFF command is given:

spool off

Table 4 summarizes the query buffer commands described in this section. Com-

mands that can be abbreviated to the first character are noted with parentheses.

TABLE 4: SQL*PLUS QUERY BUFFER COMMANDS

Command Description

(A)PPEND appends text to the active line

(C)HANGE changes the contents of the query
buffer

CLEAR BUFFER clears the query buffer

COLUMN column_name FORMAT template sets the display format

DEFINE _EDITOR=/usr/ucb/vi sets the editor to vi
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
CHARACTER FUNCT IONS

Character functions manipulate strings of characters. Some of the functions mod-

ify the original strings, and some provide information about the strings (such as

where certain sequences of characters appear in a string). Table 5 lists many of the

character functions available through ORACLE. Most of these functions are not

described in this tutorial; see [Koc97] for descriptions of their use.

EDIT edits the query buffer

EDIT filename edits the named file

HOST command runs a UNIX command

(L)IST lists the contents of the query buffer

(R)UN runs the query in the buffer

/ runs the query in the buffer

SAVE filename writes the query buffer to filename

SPOOL filename turns on the spooling to filename

SPOOL OFF turns off spooling

START filename runs the commands in the named file

@ filename runs the commands in the named file

TABLE 5: CHARACTER FUNCTIONS

Function Definition

string1 || string2 concatenates the two strings

ASCII(string) returns the ASCII value of the first character
of string

CHR(ASCII value) returns the printable character that ASCII
value represents

TABLE 4: SQL*PLUS QUERY BUFFER COMMANDS (CONTINUED)

Command Description
559 9

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

56
CONCAT(string1, string2) concatenates the two strings

INITCAP(string) returns string with initial characters in
upper case

INSTR(string, set [,start [,occurrence]]) returns the location of the occurrence of
set characters in string; the search begins
at character number start.

LENGTH(string) returns the number of characters in string

LOWER(string) returns string in lower case

LPAD(string, length[, ’set’]) pads string on the left with the optional set
characters (blank is default) to make string
length-characters long

LTRIM(string[,’set’]) trims string on the left of the optional set
characters (blank is default)

RPAD(string, length[, ’set’]) pads string on the right with the optional
set characters (blank is default) to make
string length-characters long

RTRIM(string[,’set’]) trims string on the right of the optional set
characters (blank is default)

SUBSTR(string, start [, count]) returns count letters from string beginning
at character number start

UPPER(string) returns string in upper case

VALUE(string) returns a mathematical value for string,
assuming that string is a set of characters
representing numbers

TABLE 5: CHARACTER FUNCTIONS (CONTINUED)

Function Definition
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
NUMBER FUNCT IONS

ORACLE includes three types of number functions: single-value functions, group-

value functions, and list functions. In addition to these, the IDC has added func-

tions that apply particularly to monitoring. Many of these functions and their def-

initions are listed in Tables 6 through 8. Group-value functions are described in

Table 3 on page 22. Examples of the IDC functions are provided after the tables.

TABLE 6: ORACLE SINGLE-VALUE FUNCTIONS

Function Definition

value1 + value2 addition

value1 - value2 subtraction

value1 * value2 multiplication

value1 / value2 division

ABS(value) absolute value of value

ACOS(value) arc cosine of value in radians

ASIN(value) arc sine of value in radians

ATAN(value) arc tangent of value in radians

ATAN2(value1, value2) arc tangent of value1/value2 in radians

CEIL(value) value is a decimal number rounded upwards to an inte-
ger

COS(value) cosine of value

COSH(value) hyperbolic cosine of value

EXP(value) e raised to value power

FLOOR(value) value is a decimal number rounded downwards to an
integer

LOG(base, value) logarithm to base base of value

MOD(value, divisor) modulus (remainder) of value/divisor

NVL(value, substitute) replaces value with substitute, if substitute is NULL
579 9

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

58
POWER(value, exponent) value to exponent power

ROUND(value, precision) rounds value to precision decimal places

SIGN(value) –1 if value < 0 and +1 otherwise

SIN(value) sine of value

SINH(value) hyperbolic sine of value

SQRT(value) square root of value

TAN(value) tangent of value

TANH(value) hyperbolic tangent of value

TRUNC(value) truncates value to an integer without rounding

TABLE 7: ORACLE LIST FUNCTIONS

Function Definition

GREATEST(value1, value2,...) greatest of value1, value2,...

LEAST(value1, value2,...) least of value1, value2,...

TABLE 8: IDC FUNCTIONS

Function Definition

AZIMUTH(lat1, lon1, lat2, lon2, back) returns azimuth in degrees, clockwise
from north of point 2 (lat2, lon2) as seen
from point 1 (lat1, lon1) when back is 0,
and returns backazimuth when back is 1

DEGACOS(value) arc cosine of value in degrees

DEGASIN(value) arc sine of value in degrees

DEGATAN(value) arc tangent of value in degrees

TABLE 6: ORACLE SINGLE-VALUE FUNCTIONS (CONTINUED)

Function Definition
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
The assoc table provides the azimuth, backazimuth, and distance calculated from

the origin to the stations of every phase associated with an origin: seaz (station-to-

event azimuth), esaz (event-to-station azimuth), and delta. For stations that do

not have associated phases, however, the distance and azimuth must be calcu-

lated. Query (69) uses the IDC functions to obtain the azimuth, backazimuth, dis-

tance in degrees, and distance in kilometers from station EKA to origin 3679.

(69) SQL> select azimuth(s.lat, s.lon, o.lat, o.lon, 0) azimuth,

azimuth(s.lat, s.lon, o.lat, o.lon, 1) back_azimuth,

deg_distance(s.lat, s.lon, o.lat, o.lon) deg_distance,

km_distance(s.lat, s.lon, o.lat, o.lon) km_distance

from origin o, site s

where o.orid=3679

and s.sta='EKA';

 AZIMUTH BACK_AZIMUTH DEG_DISTANCE KM_DISTANCE

---------- ------------ ------------ -----------

76.4222298 316.270036 53.141544 5909.07614

SQL>

DEGATAN2(value1, value2) arc tangent of value1/value2 in degrees

DEG_DISTANCE(lat1, lon1, lat2, lon2) returns the distance in degrees between
point 1 (lat1, lon1) and point 2 (lat2,
lon2) on the earth’s surface

KM_DISTANCE(lat1, lon1, lat2, lon2) returns the distance in kilometers
between point 1 (lat1, lon1) and point 2
(lat2, lon2) on the earth’s surface

TABLE 8: IDC FUNCTIONS (CONTINUED)

Function Definition
599 9

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

60
MANIPULAT ING DATES AND TIMES

A date field may be used in any SQL clause that allows a number or character

field. ORACLE date fields are stored in an internal format. All database operations

must convert to and from this internal format using the TO_CHAR() and

TO_DATE() functions. TO_CHAR() converts a field from ORACLE’s internal for-

mat to a character string. TO_DATE() converts a field from a character string or

number to ORACLE’s internal date format. ORACLE date and time functions are

summarized in Table 9, and some of the date formats are listed in Table 10.

All IDC database dates use Greenwich Mean Time (GMT).

TABLE 9: ORACLE DATE AND TIME FUNCTIONS

Function Definition

TO_CHAR(date, ‘format’) converts an ORACLE date into a string using format

TO_DATE(string, ‘format’) converts string into an ORACLE date using format

TABLE 10: ORACLE DATE AND TIME FORMATS

Format Definition Example

DD day of month number 01

DY three-character day of week in capital letters FRI

Dy three-character day of week with initial letter capitalized Fri

dy three-character day of week in lower case letters fri

DAY day of week in capital letters FRIDAY

Day day of week with initial letter capitalized Friday

day day of week in lower case letters friday

DDD day of year 365

MI minute of hour 30

MM month number of year 06
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
In the following examples, dates are represented as two-digit years (the YY for-

mat) for display purposes. Internally, ORACLE represents dates as four-digit years

(the YYYY format). The following data template is used for the examples:

ÕMM/DD/YY HH24:MI:SSÕ

January 15, 1970 at 11 p.m. is formatted as follows:

01/15/70 23:00:00

The date template must be enclosed by single quotes. The characters / and :, and

the space separating the date from the time are optional string characters. The fol-

lowing template omits those characters:

ÕMMDDYYHH24MISSÕ

January 15, 1970 at 11 p.m. would then be output as follows:

011570230000

The HH24 format instructs ORACLE to output dates on a 24-hour clock.

MON three-character month name in capital letters JUN

Mon three-character month name with initial letter capitalized Jun

mon three-character month name in lower case letters jun

MONTH month name in capital letters JUNE

Month month name with initial letter capitalized June

month month name in lower case letters june

SS second of minute 04

YYYY four-character year number 1998

YY last two characters of the year number 98

TABLE 10: ORACLE DATE AND TIME FORMATS (CONTINUED)

Format Definition Example
619 9

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

62
Se lec t ing Dates

Given the name of the field to convert and a display format, the TO_CHAR()

function converts the field from ORACLE’s internal format to a character string.

Query (70) selects sysdate, an ORACLE internal column containing the current

date and time, from the table dual.

(70) SQL> select sysdate

from dual;

SYSDATE

23-SEP-97

SQL>

By default, ORACLE returns only the date portion. Query (71) reformats the out-

put to change the date format and include the time.

(71) SQL> select to_char(sysdate,ÕMM/DD/YY HH24:MI:SSÕ)

from dual;

TO_CHAR(SYSDATE,'MM/DD/YYHH24:MI:SS')

09/23/97 13:44:06

SQL>

Query (72) changes the column heading to now and makes it 17 characters wide

with the A (alphanumeric) display format.

(72) SQL> column now format A17

SQL> select to_char(sysdate,ÕMM/DD/YY HH24:MI:SSÕ) now

from dual;

NOW

09/23/97 13:45:38

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
Query (73) DEFINEs now and lddate to be substitution variables. The query also

renames the columns now and lddate, respectively, and so requires quotes around

the definition. The character & substitutes the defined string in the place of &now

or &lddate. These definitions are included in the global login startup file at the IDC

and can be used in any query. The & operator prints the value of a substitution

variable.

(73) SQL> define now="to_char(sysdate,ÕMM/DD/YY HH24:MI:SSÕ) now"

SQL> column now format A17

SQL> define lddate="to_char(lddate,ÕMM/DD/YY HH24:MI:SSÕ) lddate"

SQL> column lddate format A17

SQL> select &lddate

from origin

where orid=3509;

LDDATE

03/12/90 16:15:51

SQL>

Conver t ing be tween Epoch T imes
and Dates

All times in the PIDC and IDC databases are recorded in epoch time. This time

counts, to millisecond accuracy, the number of seconds since midnight January 1,

1970. Query (74) displays the time for wfid 5532.

(74) SQL> column time format 999999999.999

SQL> select wfid, time

from wfdisc

where wfid=5532;

 WFID TIME

---------- --------------

 5532 636737307.566

SQL>
639 9

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

64
Epoch time has little meaning to people, so substitution variables are included in

the IDC global startup file to convert epoch times to human-readable times.

In Query (74) etoh (epoch-to-human) combines ORACLE’s TO_DATE and

TO_CHAR functions to convert epoch time to a human-readable date. The time

field is divided by 86400 (the number of seconds in a day) to calculate the number

of days, hours, minutes, and seconds it represents. Fractional seconds are

dropped. That result is added to January 1, 1970, to provide the date and time.

Because January 1, 1970 is represented by the character string ‘01/01/1970’ and

time is a floating point field, the TO_DATE function is used to convert both the

character string and time to the DATE data type so that they may be added. The

TO_CHAR function is used to display the resulting date as a character string. The

column heading is named etoh and made 17 characters wide.

(75) SQL> define etoh="to_char(to_date(Õ01/01/1970Õ,ÕMM/DD/YYYYÕ)+ -

(time/86400),ÕMM/DD/YY HH24:MI:SSÕ) etoh"

SQL> column etoh format A17

SQL> select time, &etoh

from wfdisc

where wfid=5532;

 TIME ETOH

-------------- -----------------

 636737307.566 03/06/90 15:28:28

SQL>

In Query (75) the substitution variable for etoh is too long to fit on a single line.

Although SELECT statements may continue freely across lines, as shown in Query

(73), if a DEFINE spans more than one line, a dash (–) must be used to alert

ORACLE that the definition continues onto the next line.

Etoh substitutes a human readable version of the time column in a query. If the

query joins two tables that each contain a time column, then using &etoh will

cause an error because ORACLE cannot identify the specific time column to be

converted. Two substitutions, w_etoh and o_etoh, provide specific time conver-

sions for the wfdisc and origin tables of the IDC database. When using these sub-
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
stitutions, correlation names may not be used for the origin or wfdisc tables. Query

(76) defines w_etoh and o_etoh and uses o_etoh to obtain the time of an origin in

a join with the arrival table.

(76) SQL> define w_etoh="to_char(to_date(Õ01/01/1970Õ,ÕMM/DD/YYYYÕ)+ -

 (wfdisc.time/86400),ÕMM/DD/YY HH24:MI:SSÕ) w_etoh"

SQL> column w_etoh format A17

SQL> define o_etoh="to_char(to_date(Õ01/01/1970Õ,ÕMM/DD/YYYYÕ)+ -

 (origin.time/86400),ÕMM/DD/YY HH24:MI:SSÕ) o_etoh"

SQL> column o_etoh format A17

SQL> select lat, lon, &o_etoh, phase, azimuth, slow

from assoc a, arrival ar, origin

where a.orid=3509

and origin.orid=3509

and a.arid=ar.arid;

 LAT LON O_ETOH PHASE AZIMUTH SLOW

--------- --------- ----------------- -------- ---------- -------

 -20.4274 -67.2272 03/06/90 12:57:43 PKP 276 1.90

-20.4274 -67.2272 03/06/90 12:57:43 LR -1 -1.00

-20.4274 -67.2272 03/06/90 12:57:43 P 131 4.30

SQL>

Etoh3 is the decimal version of etoh with time displayed to three decimal places.

The decimals (obtained from subtracting the truncated time value from the com-

plete time value) are concatenated onto the end of the standard etoh definition.

Dtime is the same as etoh except that default null times in the database

(9999999999.999) are returned as null date strings. Query (77) defines both

etoh3 and dtime and provides a result for etoh3.
659 9

SQL*Plus
Extensions

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

66
(77) SQL> define etoh3="to_char(to_date(Õ01/01/1970Õ,ÕMM/DD/YYYYÕ)+ -

 (time/86400),ÕMM/DD/YY HH24:MI:SSÕ|| -

 ltrim(to_char(time-trunc(time),Õ.099Õ)) etoh3"

SQL> column etoh3 format A21

SQL> define dtime="decode(time,-9999999999.999,ÕNO TIME PROVIDED Ô, -

 to_char(to_date(Õ01/01/1970Õ,ÕMM/DD/YYYYÕ)+ -

 (time/86400),ÕMM/DD/YY HH24:MI:SSÕ)) dtime"

SQL> column dtime format A17

SQL> select time, &etoh3

from wfdisc

where wfid=5532;

 TIME ETOH3

--------------- ---------------------

 636737307.566 03/06/90 15:28:28.566

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
Improv ing Query Pe r fo rmance

This chapter describes how to improve query performance and includes the fol-

lowing topics:

■ Using Indexed Columns

■ Listing Most Restrictive Tables Last

■ Using IN Versus EXISTS
679 9

Improving
Query

Performance

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

68
Improv ing Query Pe r fo rmance

Many factors, including system load and data set size, affect query performance.

The more a system is loaded, the slower the results are returned. Additionally, all

queries perform well on small data sets such as the geodemo data set. But a query

that runs quickly on a small data set may have significant performance problems

on a large data set.

Although you may not be able to control system load or data set size, you can

control the syntax and wording of SQL queries, which can improve performance

dramatically. In particular, the following tips will help you improve query perfor-

mance:

■ Reference indexed columns in the WHERE clause.

■ List the most restrictive table last in the FROM clause.

■ Use the size of the inner query and indexing to decide if IN or EXISTS

will perform better.

This section explains each of these tips in greater detail. Most of the queries in this

section were run on a data set containing eight weeks of data, so output will not

match the same query run on the geodemo data set. The arrival and assoc tables in

the eight-week data set contain 46,856 and 4,396 records respectively.

The ORACLE command SET TIMING ON is useful for comparing the performance

time of different versions of the same query. Query (78) shows an elapsed time of

.05 seconds.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Improving
Query
Performance

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
(78) SQL> set timing on;

SQL> select orid, count(arid)

from assoc

where orid < 3510

group by orid

having count(arid) > 2

order by 2 desc;

 ORID COUNT(ARID)

--------- -----------

 3506 12

 3508 8

 3503 6

 3504 4

 3509 3

Elapsed: 00:00:00.05

SQL>

USING INDEXED COLUMNS

To optimize query performance, the DBA will define indexes on columns. An index

tracks data the way a card catalog at the library tracks books. Given the name of a

book, the card catalog provides its location. A database index provides a similar

mechanism for retrieving data and eliminates the time-consuming search of the

whole table. In IDC databases, indexes can fill as much disk space as the data.

Indexed columns should be referenced in the WHERE clause. For example, given a

query on the wfdisc table for a station and channel, the sta and chan columns

must be indexed for the query to run efficiently. ORACLE databases contain data

dictionary tables, user_ind_columns and all_ind_columns, which contain the indexed

columns. User_ind_columns contains only the indexes for tables in the current

account, and all_ind_columns contains the indexes for all tables in the database

instance (table names and owners are stored in uppercase).
699 9

Improving
Query

Performance

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

70
Query (79) shows that the wfdisc table of the geodemo instance has three indices:

wfidx, wfstax, and wftimex. wfidx contains a single column, wfstax contains three

columns, and wftimex contains two columns. An index containing more than one

column is called a concatenated index. The index name should never be used in a

query because the ORACLE optimizer decides which index to use.

(79) SQL> column index_name format A15

SQL> column table_name format A15

SQL> column column_name format A15

SQL> select index_name, table_name, column_name, column_position,

 column_length

from all_ind_columns

where table_name=ÕWFDISCÕ

and table_owner=ÕGEODEMOÕ;

INDEX_NAME TABLE_NAME COLUMN_NAME COLUMN_POSITION COL_LEN

--------------- --------------- --------------- --------------- -------

WFIDX WFDISC WFID 1 22

WFSTAX WFDISC STA 1 6

WFSTAX WFDISC CHAN 2 8

WFSTAX WFDISC TIME 3 22

WFTIMEX WFDISC TIME 1 22

WFTIMEX WFDISC ENDTIME 2 22

SQL>

Sometimes ORACLE ignores the indexed files and scans the whole table. The fol-

lowing list provides common reasons for these occurrences and strategies for

improving query performance through the use of indexed columns:
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Improving
Query
Performance

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
1. An index is ignored if the left-most part of a concatenated index is not

referenced.

If the index is made up of more than one column, include the first (left-

most) column in the query. You can omit columns to the right.

The following query finds waveform data for all short-period instru-

ments:

SQL> select *

 from wfdisc

 where chan = ÕseÕ;

To avoid a full table scan, specify the array of interest:

SQL> select *

 from wfdisc

 where sta like ÕAR%Õ and chan = ÕseÕ;

2. An index is ignored if a wildcard is the first character of the constant.

The following query causes a full table scan:

SQL> select *

 from wfdisc

 where sta like Õ%RÕ;

3. An index is ignored if the column is modified by a function or an

arithmetic operation, as shown in the following query:

SQL> select *

 from wfdisc

 where sta = ÕNRA0Õ

and substr(chan,1,1) = ÕsÕ;

By avoiding use of the SUBSTR function, an index on chan is used:

SQL> select *

 from wfdisc

 where sta = ÕNRA0Õ

and chan like Õs%Õ;
719 9

Improving
Query

Performance

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

72
4. Performance suffers when functions are used. If a predicate mixes

datatypes, avoid using functions on the column, as shown in the

following query:

SQL> select wfid from wfdisc

 where to_char(to_date(Õ01/01/1970Õ,ÕMM/DD/YYYYÕ)+

(time/86400),ÕMM/DD/YY HH24:MI:SSÕ)

between Õ03/06/90Õ and Õ03/07/90Õ;

Instead, write the query as follows:

SQL> select wfid from wfdisc

 where time between

(to_date(Õ03/06/90Õ,ÕMM/DD/YYÕ)-

to_date(Õ70/01/01Õ,ÕYY/MM/DDÕ))*86400

(to_date(Õ03/07/90Õ,ÕMM/DD/YYÕ)-

 to_date(Õ70/01/01Õ,ÕYY/MM/DDÕ))*86400;

5. An index will not be used if a query contains != or NOT, as shown in the

following query:

SQL> select *

 from arrival

 where sta != ÕARCÕ;

6. Even if an index is used, restrict the range if at all possible to avoid a

wide scan, as shown in the following query:

SQL> select *

 from arrival

 where time <= 636720000 or time >= 636730000;

Instead, restrict the range as follows:

SQL> select *

 from arrival

where (time between 636720000-2400 and 636720000)

or (time between 636730000 and 636730000+2400);

Unless 75 to 80 percent of the table is eliminated by a WHERE clause, the use of

an index will add more overhead than a table scan. These strategies may be used

to deliberately disable indices.

Finally, ORACLE will use five indices at most. Disable indices on other columns to

control which columns the optimizer considers as a candidate for an index.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Improving
Query
Performance

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
L IST ING MOST RESTR ICT IVE
TABLES LAST

ORACLE uses a query optimizer that attempts to determine the driving table for

joins. ORACLE will use the table order, however, when querying tables that are

both indexed, if no other information determines the driving table. When using

the table order, the tables in the FROM clause are processed from right to left. The

last table in the FROM clause is the driving table, so it should contain the fewest

rows for ORACLE to process initially. For queries in which a WHERE clause condi-

tion returns very few rows from one of the tables, that table should be listed last.

If full table scans are likely, the table with the fewest rows should be listed last.

Query (80) and Query (81) were run on a data set containing eight weeks of data

(arrival contains 46,856 records and assoc contains 4,396 records). Query (80)

took over three minutes to complete, and Query (81) took only 40 seconds. The

only difference between the two queries is the order of the tables in the FROM

clause.

(80) SQL> set timing on;

SQL> select ac.phase, count(ac.arid), avg(ar.slow)

from assoc ac, arrival ar

where ac.arid=ar.arid

and ar.slow > 0.0

and ac.phase in (ÕPnÕ, ÕPgÕ, ÕSnÕ, ÕLgÕ)

group by ac.phase;

PHASE COUNT(AC.ARID) AVG(AR.SLOW)

-------- -------------- ------------

Lg 1549 26.9432021

Pg 417 15.6335971

Pn 1468 13.9206676

Sn 277 23.9224549

Elapsed: 00:03:11.48

SQL>
739 9

Improving
Query

Performance

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

74
(81) SQL> select ac.phase, count(ac.arid), avg(ar.slow)

from arrival ar, assoc ac

where ac.arid=ar.arid

and ar.slow > 0.0

and ac.phase in (ÕPnÕ, ÕPgÕ, ÕSnÕ, ÕLgÕ)

group by c.phase;

PHASE COUNT(AC.ARID) AVG(AR.SLOW)

-------- -------------- ------------

Lg 1549 26.9432021

Pg 417 15.6335971

Pn 1468 13.9206676

Sn 277 23.9224549

Elapsed: 00:00:40.26

SQL>

In Query (80) and Query (81) neither slow nor phase are indexed, so the driving

table is fully scanned. In fact, indices would not help in this case because most

arrival records will have a slowness greater than 0.0 and most assoc records will

occur within the specified phases. Given the 75 to 80 percent rule for indices as

described in the previous section, scanning the whole table is more efficient than

processing an index. The strategy is to limit the full table scan to the smaller of the

two tables and extract data from the larger table based on the efficient arid join.

The assoc table contains 4,396 records in this data set and the arrival table contains

46,856 records; therefore, assoc is a better driving table.

USING IN VERSUS EX ISTS

An IN subquery returns the same result as an EXISTS subquery, but ORACLE pro-

cesses each subquery differently. A subquery has two parts: the outer query and

the inner query. The inner query of an IN subquery is executed once, and the

results are stored in an unindexed temporary table. Each row in the outer query is

then compared to the rows in the temporary table. If the outer row is found in the

temporary table, it is returned to the user.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Improving
Query
Performance

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
The inner query of an EXISTS subquery is executed repeatedly, once for each row

in the outer query. The inner query returns TRUE or FALSE to the outer query. If it

returns TRUE, then the row in the outer query is returned to the user.

Sometimes one subquery form will perform better than the other depending on

the size of the inner query data set. Query (82) and Query (83) return the earliest

associated arrival time for a given orid in the eight-week data set.

(82) SQL> select min(time)

from arrival

where arid in

(select arid

from assoc

where orid=105196);

 MIN(TIME)

 623520155

Elapsed: 00:00:00.35

SQL>

(83) SQL> select min(time)

from arrival

where exists

(select *

from assoc

where arrival.arid=assoc.arid;

 MIN(TIME)

 623520155

Elapsed: 00:00:01.46

SQL>
759 9

Improving
Query

Performance

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

76
The difference in performance of Query (82) and Query (83) is negligible but sug-

gests the IN might perform slightly better than the EXISTS. Because the assoc table

has only three records for orid 105196, the temporary table created for Query

(82) is quite small, and the inner query for Query (83) is performed only three

times.

Query (84) and Query (85), however, show a dramatic difference in performance.

Each query returns a count of the unassociated arrivals by station in the eight-

week data set.

(84) SQL> select sta, count(arid)

from arrival

where arid not in

(select arid

from assoc)

group by sta;

STA COUNT(ARID)

------ -----------

Query killed after 18 hours

SQL>

(85) SQL> select sta, count(arid)

from arrival

where not exists

(select arid

from assoc

where assoc.arid=arrival.arid)

group by sta;

STA COUNT(ARID)

------ -----------

ARA0 27193

NRA0 15270

Elapsed: 00:02:40.92

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Improving
Query
Performance

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
The inner query in Query (84) does not contain a WHERE clause to narrow the

search; the intermediate table contains all 4,396 records from the assoc table.

Because ORACLE cannot index the temporary table, each of the 46,856 rows in

the outer query scans the entire intermediate table. Performance is probably com-

parable to the 56-hour cartesian product of Query (33). The EXISTS form in Query

(85) performs much better than Query (84) because it uses any available index.

In summary, if the temporary table produced by the IN subquery is quite small, the

IN could perform better than the EXISTS because it avoids repeated executions of

the inner query. If the temporary table produced by the IN subquery is quite large,

the EXISTS will perform better because it can use any available index.
779 9

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
Nav iga t ing Databases

This chapter describes how databases may be distributed and organized and how

to obtain this type of information from a database. The following topics are dis-

cussed:

■ Instances

■ Accounts

■ Tables
799 9

Navigat ing
Databases

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

80
Nav iga t ing Databases

To use the IDC database most efficiently, you should be familiar with the database

instances, the accounts that are included in each instance, and the database tables

that are included in each account. You should also understand the relationships

among the tables within the accounts and the contents of the tables themselves.

The latter information is contained in [IDC5.1.1Rev1], and a description of the

tables is in preparation. Much of the information is also available in the adminis-

trative tables included within the databases and can be accessed through simple

queries.

INSTANCES

A database instance is everything needed to run the database (programs, memory,

and so on). An instance contains a collection of database accounts with unique

names. Using an analogy, consider the database instance as one computer in a

network of computers. Several different database instances occur at the IDC, each

of which serves a specific purpose. IDC database instances exist for processing of

seismic, hydroacoustic, and infrasonic data, for IDC processing of radionuclide

data, for archiving of processing results, and for testing new processing schemes.

Different database instances are usually installed on different computers of a com-

puter network to prevent heavy loads on one database, which would affect the

performance of the other databases, and as insurance against hardware failure.

ACCOUNTS

A database account is a collection of database tables that have unique names and

that are protected by account passwords. In the computer network analogy where

the database instances are the computers, database accounts are the user

accounts. Each database instance may contain several database accounts. The
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Navigat ing
Databases

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
database account names must be unique within the database instance, but the

same account names may be (and often are) shared by several database instances.

In the IDC database instances the accounts are used to separate static information

(changed relatively infrequently) from dynamic information (changed regularly).

The dynamic accounts represent various stages of data processing.

A list of the database accounts within the database instance is maintained in the

all_catalog table. Query (86) obtains the names of all accounts.

(86) SQL> select distinct owner

from all_catalog;

OWNER

AUTODRM

DFX

IDCEXPORT

IDCLEB

IDCREB

IDCWDB

IDCX

MAP

SEL1

SEL2

SEL3

12 rows selected.

SQL>

The DISTINCT command must be used in the query because the all_catalog table

has one row for every table in the database instance.

TABLES

A table is a set of rows that each contain a specific set of columns. The four types

of tables are base, synonym, view, and sequence. A base table contains data. A

synonym contains no data itself, but points to a base table, usually in another

account. To the user, the synonym looks and behaves like a base table, but queries
819 9

Navigat ing
Databases

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

82
to the synonym are actually made to the base table. Synonyms allow sharing of

tables between accounts. A view also contains no data itself, but is a collection of

pointers to the contents of base tables through execution of a query. The query

acts like a window through which information is viewed. As the contents of the

base tables change, so do the contents of the view. A sequence is used to track a

unique sequence of numbers without having to create a special table.

The user_catalog table maintains a list of the tables within the current database

account and the table type (TABLE, SYNONYM, VIEW, or SEQUENCE). The

all_catalog table includes a list of all tables within the current database instance.

Query (87) obtains the names of all tables in account geodemo.

(87) SQL> select table_name

from all_catalog

where owner='GEODEMO';

TABLE_NAME

AFFILIATION

ARRIVAL

ASSOC

GREGION

INSTRUMENT

LASTID

NETMAG

NETWORK

NEXTID

ORIGERR

ORIGIN

PATH

REMARK

SENSOR

SITE

SITECHAN

SREGION
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Navigat ing
Databases

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
STAMAG

WFDISC

WFTAG

20 rows selected.

SQL>

Query (88) uses the DESCRIBE command to obtain a description of the columns

of any individual table. No semicolon is required after the DESCRIBE command.

(88) SQL> describe all_catalog

 Name Null? Type

 ------------------------------- -------- ----

 OWNER NOT NULL VARCHAR2(30)

 TABLE_NAME NOT NULL VARCHAR2(30)

 TABLE_TYPE VARCHAR2(11)

SQL>
839 9

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
Advanced Se i smo logy Quer i e s

This chapter presents queries that are more complex than the previous examples.

In some cases, the examples use special features of the IDC schema. Although all

sample queries were run on the geodemo data set for demonstration purposes,

most of them are not interesting unless they are run on a large data set. Queries in

this section use ORACLE extensions to the ANSI SQL standard, such as substitu-

tion variables, which will not run on other databases. The following topics are

included:

■ Finding All Events in Arrival Time Windows

■ Retrieving Origin Information from Events with Depth Phases

■ Estimating Station Residuals

■ Calculating Azimuth Resolution

■ Performing Linear Regression
859 9

Advanced
Seismology

Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

86
Advanced Se i smo logy Quer i e s

FINDING ALL EVENTS IN ARR IVAL
T IME WINDOWS

Query (89) finds all events within an arrival time window. It also counts the num-

ber of arrivals in the time window.

(89) SQL> define begin_time = 636725500

SQL> define end_time = 636730000

SQL> select ac.orid, count(ac.arid)

from assoc ac, arrival ar

where ac.arid=ar.arid

and ar.time between &begin_time and &end_time

group by ac.orid;

 ORID COUNT(AC.ARID)

--------- --------------

 3507 2

 3508 8

 3509 2

 3510 3

SQL>

Query (90) calculates the number of arrivals for each event. Observe the count of

arids for each orid; two arrivals are outside of the original time window, one each

for orids 3509 and 3510.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Advanced
Seismology
Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
(90) SQL> select orid, count(arid)

from assoc

where orid in (3507, 3508, 3509, 3510)

group by orid;

 ORID COUNT(ARID)

--------- -----------

 3507 2

 3508 8

 3509 3

 3510 4

SQL>

Query (91) finds arrivals outside the original search time window for orids 3509

and 3510.

(91) SQL> select ac.orid, ar.arid, ar.time

from arrival ar, assoc ac

where ar.arid=ac.arid

and (ar.time < &begin_time or ar.time > &end_time)

and (ac.orid between 3509 and 3510);

 ORID ARID TIME

--------- --------- --------------

 3510 67531 636730145.594

 3509 67651 636731411.000

SQL>

One problem with this query is that the arrival table will be fully scanned because

data before the begin_time and after the end_time comprise the majority of the

table. Consequently, performance on large data sets will be degraded. You can

improve efficiency by limiting the search to a specific duration between the begin

and end times. For example, if you know that the travel time is less than 40 min-

utes, define a duration of 2400 epoch seconds and restate the query as shown in

Query (92).
879 9

Advanced
Seismology

Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

88
(92) SQL> define duration=2400

SQL> select ac.orid, ar.arid, ar.time

 from arrival ar, assoc ac

where ar.arid=ac.arid

and (ar.time between &begin_time - &duration and &begin_time

or ar.time between &end_time and &end_time + &duration)

and (ac.orid between 3509 and 3510);

 ORID ARID TIME

--------- --------- --------------

 3510 67531 636730145.594

 3509 67651 636731411.000

SQL>

Query (93) avoids a search for specific orids by finding all arrivals outside a given

time window that have orids within the given time window.

(93) SQL> select ar.arid, ar.time, ac.orid

from arrival ar, assoc ac

where ar.arid=ac.arid

and (ar.time between &begin_time - &duration and &begin_time

or ar.time between &end_time and &end_time + &duration)

 and ac.orid in

(select ac2.orid

from assoc ac2, arrival ar2

where ac2.arid=ar2.arid

and ar2.time between &begin_time and &end_time

);

 ARID TIME ORID

--------- -------------- ---------

 67651 636731411.000 3509

 67531 636730145.594 3510

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Advanced
Seismology
Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
RETR IEV ING ORIG IN INFORMATION
FROM EVENTS WITH DEPTH
PHASES

Query (94) demonstrates an EXISTS subquery. Given an origin with a depth

greater than 20 km, the assoc table is searched for an associated arrival with a

phase of either ‘pP’ or ‘sP.’ If one exists, the origin information is retrieved.

(94) SQL> select o.orid, o.jdate, o.lat, o.lon, o.depth, o.mb, o.ms, o.ndef

from origin o

where o.depth > 20.0

and exists

(select arid

from assoc

where orid = o.orid

and phase in (ÕpPÕ,ÕsPÕ)

);

 ORID JDATE LAT LON DEPTH MB MS NDEF

------- -------- --------- --------- --------- --------- ---------- ----

 3506 1990065 12.1327 143.6159 22.1815 4.39 1.91 10

 3683 1990065 -10.8992 117.5039 29.6973 5.10 5.39 19

 3513 1990065 -17.8557 168.0396 27.5160 4.38 2.7 7

SQL>

EST IMAT ING STAT ION RES IDUALS

Query (95) estimates station residuals by using the phase P associated with origins

having at least four defining phases. It returns only those stations that have more

than five such phases.

Query (95) uses four basic math and set functions: COUNT, AVG, SQRT, and

STDDEV. The GROUP BY clause causes the average to be calculated on a station-

by-station basis. The HAVING clause restricts the results to those stations with

more than five observations.

Although this query executes properly on the geodemo data set, it returns more

interesting results when run on larger data sets.
899 9

Advanced
Seismology

Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

90
(95) SQL> select a.sta, count(a.arid) num,

avg(a.timeres) avg_timeres_residual,

stddev(a.timeres) stand_timeres_dev

from assoc a, origin o

where o.orid = a.orid

and a.phase = ÕPÕ

and o.ndef >= 4

group by a.sta

having count(a.arid) > 5;

STA NUM AVG_TIMERES_RESIDUAL STAND_TIMERES_DEV

------ ---------- -------------------- -----------------

ASAR 9 -.46844444 .77499405

ASPA 6 -.97516667 .825876363

WRA 9 -.29188889 1.64798904

YKA 6 .038 .267926109

SQL>

CALCULAT ING AZ IMUTH
RESOLUT ION

Some IDC database tables contain summary information based on data from fields

in other tables. The following queries calculate the azres field in the assoc table

based on the azimuth field in the arrival table and the seaz field in the assoc table.

By definition:

assoc.azres = arrival.azimuth - assoc.seaz

The range, however, must be between –180 and 180 degrees. Azimuth and seaz

are defined to be within 0 and 360 degrees, so a simple difference may not fall

within the prescribed range.

In Query (96) azres is initialized to the NA value.

(96) SQL> update assoc

set azres = -999;

120 records updated.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Advanced
Seismology
Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
Without the WHERE clause in Query (97) any arid with an NA azimuth or seaz will

get reset to a database NULL, overwriting the NA value.

(97) SQL> update assoc ac

set ac.azres =

(select max(azimuth)-max(ac.seaz)

from arrival

where arid=ac.arid

and azimuth >= 0.0

and ac.seaz >= 0.0)

where exists

(select arid

from arrival

 where arid=ac.arid

and azimuth >= 0.0

and ac.seaz >= 0.0);

64 records updated.

If the resulting azres is less than –180, 360 must be added, as shown in Query

(98).

(98) SQL> update assoc

set azres = azres + 360.0

where azres between -360.0 and -180.0;

14 records updated.

If azres is greater than 180, 360 must be subtracted, as shown in Query (99).

(99) SQL> update assoc

set azres = azres - 360.0

where azres > 180.0;

5 records updated.
919 9

Advanced
Seismology

Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

92
Query (100) shows the result of the updates performed in Query (96) through

Query (99).

(100) SQL> select arid, azres

from assoc;

 ARID AZRES

--------- -------

 67437 1.1

 67490 -1.3

 67454 -4.9

 68223 -999.0

 67456 -5.9

 68225 -999.0

 67506 6.0

 67507 -999.0

 67377 2.9

 67378 -0.1

 66881 4.8

<many more rows>

120 records selected.

SQL>

In Query (101) these changes are made permanent in the database by the COM-

MIT command.

(101) SQL> commit;

Commit complete.

PERFORMING L INEAR REGRESS ION

This section demonstrates the use of temporary tables by using SQL to perform a

linear regression. Assume:

Y = A + B * X ± standard deviation

Suppose P-wave station residuals are correlated with station elevation, then:

residual = A + B * elevation ± error
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Advanced
Seismology
Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
In Query (102) a QR-decomposition method solves the system inside a temporary

table.

(102) rem

rem A line that begins with "rem" is a remark. ORACLE also allows

rem comments between /* and */ delimiters.

rem

rem Ignore error on drop table command--it means that the table does

rem not exist and may be created.

rem

rem A FLOAT(24) allows 7.2 decimal digits of precision.

rem

SQL> drop table datamatrix;

drop table datamatrix

*

ERROR at line 1:

ORA-00942: table or view does not exist

SQL> create table datamatrix (

 one float(24),

 X float(24),

 Y float(24),

 d12 float(24),

 d13 float(24),

 d23 float(24)

);

Table created.

rem Insert X and Y values into a temporary table.

rem Insert into data matrix elevations and residuals of defining

rem P arrivals. Check against NA values for timeres or elev.

rem

rem This insert...select can be modified for any linear regression.

SQL> insert into datamatrix (one, x, y, d12, d13, d23)

 select 1.0, s.elev, a.timeres, 0.0, 0.0, 0.0

 from assoc a, site s

 where s.sta = a.sta

and a.timedef = ÕdÕ
939 9

Advanced
Seismology

Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

94
and a.phase = ÕPÕ

and a.timeres > (-999.0 * 0.9999)

and s.elev > (-999.0 * 0.9999);

68 records created.

rem

rem Do the QR decomposition.

rem

SQL> drop table qr_coeff;

drop table qr_coeff

*

ERROR at line 1:

ORA-00942: table or view does not exist

SQL> create table qr_coeff (

 D12 float(24),

 D13 float(24),

 D23 float(24)

);

Table created.

rem

rem In the following insert, all that is really required for this data

rem set is

rem

rem select sum(X)/sum(one)

rem

rem instead of

rem

rem select sum(one*X)/sum(one*one)

rem

rem The syntax actually used solves a more general case where the

rem elements are variable in weight.

rem

SQL> insert into qr_coeff (D12, D13)

 select sum(one*X)/sum(one*one),

 sum(one*Y)/sum(one*one)

 from datamatrix;

1 record created.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Advanced
Seismology
Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
SQL> select *

 from qr_coeff;

D12 D13 D23

---------- ----------- ----------

 .39729118 -.09735294

rem

rem The double update looks redundant but SQL will not

rem allow use of subquery results in arithmetic expressions.

rem

SQL> update datamatrix

set d12 = (select max(D12) from qr_coeff),

 d13 = (select max(D13) from qr_coeff);

68 records updated.

SQL> update datamatrix

 set X = X - one * d12,

 Y = Y - one * d13;

68 records updated.

SQL> update qr_coeff

 set D23 =

 (select sum(X*Y)/sum(X*X)

 from datamatrix);

1 record updated.

SQL> update datamatrix

 set d23 =

 (select max(D23)

 from qr_coeff);

68 records updated.

SQL> update datamatrix

 set Y = Y - X * d23;

68 records updated.

rem

rem Print coefficients with unbiased variance.

rem

SQL> select D13 - D12*D23 A, D23 B

 from qr_coeff;
959 9

Advanced
Seismology

Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

96
 A B

----------- -----------

 .386994551 -1.2191247

SQL> select stddev(Y) standev

 from datamatrix;

 STANDEV

 1.06482491

rem

rem Clean up.

rem

SQL> drop table qr_coeff;

SQL> drop table datamatrix;

Although this query executes properly on the geodemo data set, it returns more

interesting results on larger data sets.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
Advanced Rad ionuc l ide
Quer i e s

This chapter presents some complex queries, which are representative of the ques-

tions a radionuclide analyst would want answered. In some cases, the examples

make subtle use of unique features of the IDC schema. Queries in this section use

ORACLE extensions to the ANSI SQL standard, such as substitution variables,

which will not run on other databases. The following sample queries are included:

■ Searching for Unreviewed FULL Spectra

■ Verifying Receipt of Spectra

■ Searching for Specific Nuclides

■ Determining Concentration Ranges

■ Searching for Specific Peaks
979 9

Advanced
Radionucl ide

Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

98
Advanced Rad ionuc l ide Quer i e s

In this section, multiple queries sometimes are grouped together under a single

example to show the steps required for satisfying a particular question. These que-

ries were run against the PIDC Operations database. The SQL queries can all be

edited and tailored to the specific needs of the radionuclide specialist.

This chapter uses the following different methods for formatting output:

■ Parentheses are used for clarity or to establish precedence.

■ Double quotation marks (") are used to assign an alias to a column

heading, for example, when the column name is too long for the speci-

fied output or when the alias is more self-explanatory than the actual

column name.

■ BREAK specifies where and how to make format changes to a report.

BREAK ON specifies action(s) to be taken when the value of an expres-

sion changes. A typical action is to SKIP a line in the report. This expres-

sion can involve an alias assigned to a report column in a SELECT

statement.

■ CLEAR resets or erases the current value or setting for an option

(clause). CLEAR BREAKS removes the breaks set by the BREAK com-

mand.

The SUBSTR character function, introduced in Table 5 on page 55, is used in the

queries of this chapter. SUBSTR returns a portion of the character string, beginning

at a specified character and including up to a specified number of characters.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Advanced
Radionucl ide
Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
SEARCHING FOR UNREVIEWED
FULL SPECTRA

Radionuclide operations staff at the IDC are primarily responsible for the timely

review of all incoming particulate and gaseous spectra; therefore, they must know

what spectra are waiting to be reviewed. One way to get this information is to

query the database. Query (103) searches for FULL spectra that were received

after 01 August 1998 and have not yet been reviewed.

(103) SQL> clear breaks

breaks cleared

SQL> break on " SITE" skip 1

SQL> select (station_code) " SITE", (detector_code) " DETECTOR",

 substr(to_char ((entry_date), 'YYYY-MM-DD HH24:MI'),1,16)

 " RMS ENTRY DATE", gards_sample_data.sample_id) "SAMPLE#",

 substr(to_char ((collect_stop), 'YYYY-MM-DD HH24:MI'),1,16)

 " COLLECTION STOP", auto_category) "CATEGORY",

 (gards_sample_status.status) "S"

 from gards_sample_data, gards_sample_status, gards_stations,

 gards_detectors

 where gards_sample_data.sample_id = gards_sample_status.sample_id

 and gards_sample_data.station_id = gards_stations.station_id

 and gards_sample_data.detector_id = gards_detectors.detector_id

 and entry_date >= '01-Aug-98'

 and data_type = 'S'

 and gards_sample_status.status IN ('A','P')

 and spectral_qualifier= 'FULL'

 and collect_stop > collect_start

 order by station_code, collect_stop,

 detector_code, acquisition_start;

 SITE DETECTOR RMS ENTRY DATE SAMPLE# COLLECTION STOP CATEGORY S

----- --------- ---------------- --------- ---------------- --------- --

CA002 CA002CAA2 1998-08-19 23:12 40277 1998-08-17 23:02 4 P

DE002 DE002IAR3 1998-08-19 11:34 40267 1998-08-03 08:24 3 P

FI001 FI001F09 1998-08-10 20:04 40078 1998-08-03 05:32 3 P

 FI001F09 1998-08-17 10:25 40230 1998-08-10 06:51 3 P

SE001 SE001-ORI 1998-08-20 07:34 40285 1998-08-18 07:00 1 P

SQL>
999 9

Advanced
Radionucl ide

Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

100
VERIFY ING RECE IPT OF SPECTRA

Radionuclide Operations staff must also verify that all spectra have been received

from a given station, to prevent gaps in the air monitoring records. Query (104)

searches the gards_sample_data table for all FULL spectra from the FI001 station

(station 42) that were collected on or after 01 June 1998.

(104) SQL> clear breaks

breaks cleared

SQL> break on " DETECTOR" skip 1

SQL> select substr((gards_sample_data.site_det_code),1,10) " DETECTOR",

 (gards_sample_data.sample_id) "SAMPLE#",

 substr(to_char ((collect_start), 'YYYY-MM-DD HH24:MI'),1,16)

 "COLLECTION START",

 substr(to_char ((collect_stop), 'YYYY-MM-DD HH24:MI'),1,16)

 " COLLECTION STOP"

 from gards_sample_data

 where collect_stop >= '01-Jun-98'

 and spectral_qualifier = 'FULL'

 and data_type = 'S'

 and collect_stop - collect_start > 0

 and station_id = 42

 order by collect_stop, acquisition_start;

 DETECTOR SAMPLE# COLLECTION START COLLECTION STOP

---------- ---------- ---------------- ----------------

FI001F09 34803 1998-05-25 05:47 1998-06-01 05:04

 34934 1998-06-01 05:09 1998-06-08 05:02

 35158 1998-06-08 05:02 1998-06-15 06:04

 35282 1998-06-15 06:07 1998-06-22 05:08

 36885 1998-06-22 05:01 1998-06-29 06:29

 37120 1998-06-29 06:34 1998-07-07 05:58

 37696 1998-07-07 06:00 1998-07-13 06:13

 37697 1998-07-13 06:15 1998-07-20 05:53

 37699 1998-07-20 05:56 1998-07-27 05:23

 40078 1998-07-27 05:25 1998-08-03 05:32

 40230 1998-08-03 05:35 1998-08-10 06:51

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Advanced
Radionucl ide
Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
SEARCHING FOR SPEC IF IC
NUCL IDES

At some European stations, previous atomic bomb tests and the Chernoybyl

nuclear accident in 1986 have resulted in 137Cs being commonly observed in

spectra. Query (105) indicates which spectra have 137Cs. This query limits the

search to FULL spectra acquired on or after 01 August 1998.

(105) SQL> clear breaks

breaks cleared

SQL> break on " DETECTOR" skip 1

SQL> select substr((gards_sample_data.site_det_code),1,10) " DETECTOR",

 substr(to_char ((gards_sample_data.sample_id),

 '9999999'),1,8) "SAMPLE#",

 substr(to_char ((collect_stop), 'YYYY-MM-DD HH24:MI'),1,16)

 " COLLECTION STOP",

 to_char ((activ_key), '99999999.00') "CONC(uBq/m3)",

 to_char (((activ_key_err / activ_key) * (100)), '9999.00')

 "%RELERR"

 from gards_sample_data, gards_nucl_ided

 where gards_sample_data.sample_id = gards_nucl_ided.sample_id

 and gards_nucl_ided.name = 'CS-137'

 and gards_sample_data.data_type = 'S'

 and gards_sample_data.acquisition_start >= '01-Aug-98'

 and gards_sample_data.spectral_qualifier = 'FULL'

 and activ_key > 0

 order by site_det_code, collect_stop;

 DETECTOR SAMPLE# COLLECTION STOP CONC(uBq/m3) %RELERR

---------- -------- ---------------- ------------ --------

DE002IAR3 40267 1998-08-03 08:24 .52 22.23

FI001F09 40078 1998-08-03 05:32 .43 11.96

 40230 1998-08-10 06:51 1.01 12.50

SQL>
1019 9

Advanced
Radionucl ide

Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

102
DETERMINING CONCENTRAT ION
RANGES

As seen in the previous output, 137Cs was identified in subsequent FI001 spectra;

therefore, the analyst should determine the range of 137Cs concentrations over a

given time period, prior to the review of the newly arrived spectra. Query (106)

determines the minimum, maximum, average, and standard deviation of 137Cs

concentrations at the FI001 station (station 42) measured in FULL spectra col-

lected since 01 June 1998.

(106) SQL> column MINIMUM format 99999.00

SQL> column MAXIMUM format 99999.00

SQL> column AVERAGE format 99999.00

SQL> column STDDEV format 99999.00

SQL> clear breaks

breaks cleared

SQL> select min(activ_key) "MINIMUM", max(activ_key) "MAXIMUM",

 avg(activ_key) "AVERAGE", stddev(activ_key) "STDDEV"

 from gards_sample_data, gards_nucl_ided

 where gards_sample_data.sample_id = gards_nucl_ided.sample_id

 and gards_sample_data.station_id = 42

 and gards_sample_data.spectral_qualifier = 'FULL'

 and gards_sample_data.data_type = 'S'

 and gards_sample_data.collect_stop >= '01-Jun-98'

 and gards_nucl_ided.name = 'CS-137'

 and activ_key > 0

 and collect_stop - collect_start > 0

 and acquisition_real_sec > 3600;

 MINIMUM MAXIMUM AVERAGE STDDEV

--------- --------- --------- ---------

 .43 3.08 1.37 .76

SQL>
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Advanced
Radionucl ide
Queries

▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
SEARCHING FOR SPEC IF IC PEAKS

During the spectral review process, if analysts observe a peak at a given energy

deemed important to the IDC, they should determine whether any other spectra

in the database indicate a peak at the same energy location. Query (107) indicates

all spectra that contain a peak between 660 and 663 keV and were collected on or

after 01 August 1998. (The output generated by Query (107) has been modified

to fit on the page.)

(107) SQL> clear breaks

breaks cleared

SQL> break on " DETECTOR" skip 1

SQL> select substr((gards_sample_data.site_det_code),1,10) " DETECTOR",

 substr((gards_sample_data.sample_id),1,6) "SAMPLE#",

 substr(to_char ((collect_stop),'YYYY-MM-DD HH24:MI'),1,16)

 " COLLECTION STOP",

 to_char ((gards_peaks.energy), '9999.00') " ENERGY",

 to_char ((gards_peaks.centroid), '9999.00') " CHANNEL",

 to_char ((fwhm), '9.00') " FWHM",

 to_char((area), '99999999.00') " NET AREA",

 to_char(((area_err / area) * (100)), '9999.00') " %RELERR"

 from gards_sample_data, gards_peaks

 where gards_sample_data.sample_id= gards_peaks.sample_id

 and gards_sample_data.data_type = 'S'

 and gards_sample_data.spectral_qualifier = 'FULL'

 and gards_sample_data.acquisition_real_sec > 3600

 and gards_peaks.energy >= 660

 and gards_peaks.energy <= 663

 and gards_sample_data.collect_stop > '01-Aug-98'

 order by site_det_code, collect_stop, acquisition_start;

 DETECTOR SAMPLE COLLECTION STOP ENERGY CHANNEL FWHM NET AREA %RELERR

--------- ------ ---------------- ------ -------- ----- -------- -------

DE002IAR3 40267 1998-08-03 08:24 661.51 1292.28 3.13 299.57 22.19

FI001F09 40078 1998-08-03 05:32 661.68 1986.36 1.25 542.03 11.49

 40230 1998-08-10 06:51 661.61 1986.07 1.30 334.91 12.05

US001USA1 40212 1998-08-14 20:32 661.85 1356.34 1.10 92.43 58.74

SQL>
1039 9

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
Refe rences

[And90b] Anderson, J., and Swanger, H., CSS Version 3 Database: SQL
Tutorial, Science Applications International Corporation, SAIC-
90/1437, 1990.

[ANS86] American National Standards Institute, Database Language
SQL, Document ANSI X3.135-1986, 1986.

[Cod90] Codd, E. F., The Relational Model for Database Management:
Version 2, Addison-Wesley Publishing Company, Reading,
MA, 1990.

[Dat86] Date, C. J., Relational Database Selected Writings, Addison-
Wesley Publishing Company, Reading, MA, 1986.

[Eme89] Emerson, S. L., Darnovsky, M., and Bowman, J. S., The
Practical SQL Handbook, Addison-Wesley Publishing
Company, Reading, MA, 1989.

[Fle89] Fleming, C. C., and von Halle, B., Handbook of Relational
Database Design, Addison-Wesley Publishing Company,
Reading, MA, 1989.

[Gil89] Gillaspy, J. L., "Oracle SQL Query Strategies," Database
Programming & Design, Vol. 2, No. 3, pp. 50-53, 1989.

[Gru90] Gruber, M., Understanding SQL, SYBEX, Inc., Alameda, CA,
1990.

[Hur88] Hursch, C. J., and Hursch, J. L., SQL, The Structured Query
Language, TAB Books, Inc., Blue Ridge Summit, PA, 1988.
1059 9

References ▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

106
[IDC5.1.1Rev1] Science Applications International Corporation, Pacific-Sierra
Research Corporation, Database Schema (Part 1, Part 2, and
Part 3), Revision 1, SAIC-99/3009, PSR-99/TN1142, 1999.

[Koc97] Koch, G., and Loney, K., Oracle8: The Complete Reference,
Oracle Press, Osborne/McGraw-Hill, Berkeley, 1997.

[Lus88] Lusardi, F., The Database Experts’ Guide to SQL, McGraw-Hill,
Inc., New York, 1988.

[Ora88] Oracle Corporation, SQL Language Reference Manual, 1988.

[Sch88] Schweighofer, R., "High Performance: Choosing the Optimum
Access Strategy," Oracle International User Week, Database
Topics 6:1-11, 1988.

[van88a] van der Lans, R. F., Introduction to SQL, Addison-Wesley
Publishing Company, Reading, MA, 1988.

[van88b] van der Lans, R. F., The SQL Standard: A Complete Reference,
Prentice Hall International (UK) Ltd, Hertfordshire, England,
1988.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
Glossa ry

A

ANSI

American National Standards Institute

C

CMR

Center for Monitoring Research.

D

DB

Database.

DBA

Database Administrator.

DBMS

Database Management System.

E

epoch time

Number of seconds after January 1,
1970 00:00:00.0.

G

GMT

Greenwich Mean Time.

GSETT

Group of Scientific Experts Technical
Test.

I

IDC

International Data Centre.

ISO

International Standards Organization.

O

Oracle

Vendor of PIDC and IDC database man-
agement system.

P

PIDC

Prototype International Data Centre.
G19 9

Glossary ▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

G2
R

RDBMS

Relational Database Management Sys-
tem.

S

SAIC

Science Applications International Cor-
poration.

SQL

Structured Query Language; a lan-
guage for manipulating data in a rela-
tional database.

T

time, epoch

See epoch time.

U

UNIX

Trade name of the operating system
used by the Sun workstations.

UTC

Universal Coordinated Time.

W

workstation

High-end, powerful desktop computer
preferred for graphics and usually net-
worked.
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
I ndex

Symbols

! 11
% 12
/ 49
< 15, 18
<= 15, 18
= 11, 18
> 18
>= 16, 18
_ 12

A

all_catalog 81, 82
AND 13
ANSI 2
APPEND 50
AS, (with CREATE TABLE) 40
asc 19
attribute. See column.

B

BETWEEN 16, 18

C

Cartesian product vi, 30
CHANGE 49
CLEAR BUFFER 54
COLUMN 49
column 4
COMMIT 44, 92
concentration ranges 102
CONNECT 8
constraints 40
correlation name vi, 27

restrictions 28
CREATE TABLE 39

D

database instance vi
datatypes 40
DELETE FROM 43
DESC 19
DESCRIBE 83
DISTINCT 21
DROP TABLE 41
dual 62
duplicate rows 21

E

EDIT 51
epoch time 63
etoh 64
EXISTS 32, 34
EXIT 9
I19 9

Index ▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I2
F

field. See column.
FORMAT 49
FROM 9

G

GROUP BY 22
group functions 22

H

HAVING 24
HOST 52

I

IN 18, 31
INSERT INTO 41

J

join vi, 25, 29
natural vi, 25, 32
outer vi, 35, 38

K

key vi, 4
alternate
foreign
primary

L

LIKE 12, 18

LIST 49
login.sql 54

N

nested query 31
NOT 13

with EXISTS 35, 37
with IN 18

nuclide peaks 103

O

one-to-many 35
one-to-one-or-none 36
OR 13
ORDER BY 18, 20

P

password 8
predicate vi, 11

Q

query buffer 48

R

record. See row.
relational database 2, 4
ROLLBACK 44
row vii, 4
RUN 49
M a r c h 1 9 9 9 I D C - 5 . 1 . 2

D a t a b a s e Tu t o r i a l

Index▼

I D C D O C U M E N T A T I O N

U s e r G u i d e s

I D C - 5 . 1 . 2 M a r c h 1 9

D a t a b a s e Tu t o r i a l
S

SAVE 52
SELECT 9
sequence numbers 20
specific nuclide search 101
SPOOL 55
SQL*Plus extensions 47
SQLPATH 54
sqlplus 8
START 52
subquery vi, 33

T

table 4
TO_CHAR() 60
TO_DATE() 60
transaction vii
tuple. See row.

U

UNION 38
UPDATE 43
user_catalog 82

V

VALUES, (with INSERT) 41
view vii

W

WHERE 10
I39 9

	Cover Page
	Notice Page
	Contents
	Tables
	About this Document
	Purpose
	Scope
	Audience
	Related Information
	Using this Document
	Conventions

	Introduction
	Structured Query Language
	Relational Databases
	Tutorial Database
	DBA Instructions

	SQL Commands
	Connecting to Database Accounts
	Starting SQL*Plus
	Changing Accounts
	Terminating Connections

	Selecting Data from Tables
	Ordering Rows of Results
	Eliminating Duplicate Rows
	Querying Multiple Tables – Joins
	Cartesian Products

	Subqueries
	Outer Joins
	Creating Tables
	Changing Table Contents
	INSERT
	DELETE
	UPDATE
	ROLLBACK and COMMIT

	SQL*Plus Extensions
	Query Buffer
	Character Functions
	Number Functions
	Manipulating Dates and Times
	Selecting Dates
	Converting between Epoch Times and Dates

	Improving Query Performance
	Using Indexed Columns
	Listing Most Restrictive Tables Last
	Using IN Versus EXISTS

	Navigating Databases
	Instances
	Accounts
	Tables

	Advanced Seismology Queries
	Finding All Events in Arrival Time Windows
	Retrieving Origin Information from Events with Depth Phases
	Estimating Station Residuals
	Calculating Azimuth Resolution
	Performing Linear Regression

	Advanced Radionuclide Queries
	Searching for Unreviewed FULL Spectra
	Verifying Receipt of Spectra
	Searching for Specific Nuclides
	Determining Concentration Ranges
	Searching for Specific Peaks

	References
	Glossary
	Index
	
	Print...

